English
Language : 

EN25LF40_1 Datasheet, PDF (9/35 Pages) Eon Silicon Solution Inc. – 4 Megabit Serial Flash Memory with 4Kbytes Uniform Sector
INSTRUCTIONS
EN25LF40
All instructions, addresses and data are shifted in and out of the device, most significant bit first. Serial
Data Input (DI) is sampled on the first rising edge of Serial Clock (CLK) after Chip Select (CS#) is driven
Low. Then, the one-byte instruction code must be shifted in to the device, most significant bit first, on
Serial Data Input (DI), each bit being latched on the rising edges of Serial Clock (CLK).
The instruction set is listed in Table 4. Every instruction sequence starts with a one-byte instruction code.
Depending on the instruction, this might be followed by address bytes, or by data bytes, or by both or
none. Chip Select (CS#) must be driven High after the last bit of the instruction sequence has been
shifted in. In the case of a Read Data Bytes (READ), Read Data Bytes at Higher Speed (Fast_Read),
Read Status Register (RDSR) or Release from Deep Power-down, and Read Device ID (RDI)
instruction, the shifted-in instruction sequence is followed by a data-out sequence. Chip Select (CS#)
can be driven High after any bit of the data-out sequence is being shifted out.
In the case of a Page Program (PP), Sector Erase (SE), Block Erase (BE), Chip Erase (CE), Write
Status Register (WRSR), Write Enable (WREN), Write Disable (WRDI) or Deep Power-down (DP)
instruction, Chip Select (CS#) must be driven High exactly at a byte boundary, otherwise the instruction
is rejected, and is not executed. That is, Chip Select (CS#) must driven High when the number of clock
pulses after Chip Select (CS#) being driven Low is an exact multiple of eight. For Page Program, if at
any time the input byte is not a full byte, nothing will happen and WEL will not be reset.
In the case of multi-byte commands of Page Program (PP), and Release from Deep Power Down
(RES ) minimum number of bytes specified has to be given, without which, the command will be
ignored.
In the case of Page Program, if the number of byte after the command is less than 4 (at least 1
data byte), it will be ignored too. In the case of SE and BE, exact 24-bit address is a must, any
less or more will cause the command to be ignored.
All attempts to access the memory array during a Write Status Register cycle, Program cycle or Erase
cycle are ignored, and the internal Write Status Register cycle, Program cycle or Erase cycle continues
unaffected.
Table 4. Instruction Set
Instruction Name
Byte 1
Code
Byte 2
Byte 3
Byte 4 Byte 5 Byte 6
n-Bytes
Write Enable
06h
Write Disable / Exit
OTP mode
04h
Read Status
Register
05h
Write Status
Register
01h
Read Data
03h
Fast Read
0Bh
Page Program
02h
Sector Erase / OTP
erase
20h
Block Erase
D8h
(S7-S0)(1)
S7-S0
A23-A16
A23-A16
A23-A16
A15-A8
A15-A8
A15-A8
A23-A16 A15-A8
A23-A16 A15-A8
continuous(2)
A7-A0
A7-A0
A7-A0
A7-A0
A7-A0
(D7-D0)
dummy
D7-D0
(Next byte)
(D7-D0)
Next byte
continuous
(Next Byte)
continuous
continuous
Chip Erase
C7h/ 60h
Deep Power-down B9h
Release from Deep
(3)
Power-down, and
dummy
dummy dummy (ID7-ID0)
read Device ID
ABh
Release from Deep
Power-down
This Data Sheet may be revised by subsequent versions
9
or modifications due to changes in technical specifications.
©2004 Eon Silicon Solution, Inc.,
Rev. G, Issue Date: 2010/05/31
www.eonssi.com