English
Language : 

DS1245Y_10 Datasheet, PDF (8/10 Pages) Dallas Semiconductor – 1024k Nonvolatile SRAM
POWER-DOWN/POWER-UP TIMING
PARAMETER
SYMBOL
VCC Fail Detect to CE and WE Inactive
tPD
VCC slew from VTP to 0V
tF
VCC slew from 0V to VTP
tR
VCC Valid to CE and WE Inactive
tPU
VCC Valid to End of Write Protection
tREC
MIN
150
150
TYP
DS1245Y/AB
(TA: See Note 10)
MAX UNITS NOTES
1.5
µs
11
µs
µs
2
ms
125
ms
PARAMETER
Expected Data Retention Time
SYMBOL MIN TYP
tDR
10
MAX
(TA = +25°C)
UNITS NOTES
years
9
WARNING:
Under no circumstance are negative undershoots, of any amplitude, allowed when device is in battery
backup mode.
NOTES:
1. WE is high for a Read Cycle.
2. OE = VIH or VIL. If OE = VIH during write cycle, the output buffers remain in a high impedance state.
3. tWP is specified as the logical AND of CE and WE . tWP is measured from the latter of CE or WE
going low to the earlier of CE or WE going high.
4. tDH, tDS are measured from the earlier of CE or WE going high.
5. These parameters are sampled with a 5 pF load and are not 100% tested.
6. If the CE low transition occurs simultaneously with or latter than the WE low transition, the output
buffers remain in a high impedance state during this period.
7. If the CE high transition occurs prior to or simultaneously with the WE high transition, the output
buffers remain in high impedance state during this period.
8. If WE is low or the WE low transition occurs prior to or simultaneously with the CE low transition,
the output buffers remain in a high impedance state during this period.
9. Each DS1245 has a built-in switch that disconnects the lithium source until the user first applies VCC.
The expected tDR is defined as accumulative time in the absence of VCC starting from the time power
is first applied by the user. This parameter is assured by component selection, process control, and
design. It is not measured directly during production testing.
10. Each DS1245 has a built-in switch that disconnects the lithium source until VCC is first applied by the
user. The expected tDR is defined as accumulative time in the absence of VCC starting from the time
power is first applied by the user.
11. All AC and DC electrical characteristics are valid over the full operating temperature range. For
commercial products, this range is 0°C to 70°C. For industrial products (IND), this range is -40°C to
+85°C.
12. In a power-down condition the voltage on any pin may not exceed the voltage on VCC.
8 of 10