English
Language : 

ATMEGA32U6 Datasheet, PDF (52/459 Pages) ATMEL Corporation – 8-bit Microcontroller with 64/128K Bytes of ISP Flash and USB Controller
7.1 Idle Mode
When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing the USB, SPI, USART, Analog Comparator, ADC, 2-wire
Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This
sleep mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.
Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.
7.2 ADC Noise Reduction Mode
When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, 2-wire
Serial Interface address match, Timer/Counter2 and the Watchdog to continue operating (if
enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the
other clocks to run (including clkUSB).
This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog System Reset, a
Watchdog interrupt, a Brown-out Reset, a 2-wire serial interface interrupt, a Timer/Counter2
interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT7:4 or a pin
change interrupt can wakeup the MCU from ADC Noise Reduction mode.
7.3 Power-down Mode
When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the 2-
wire Serial Interface, and the Watchdog continue operating (if enabled). Only an External Reset,
a Watchdog Reset, a Brown-out Reset, 2-wire Serial Interface address match, an external level
interrupt on INT7:4, an external interrupt on INT3:0, a pin change interrupt or an asynchronous
USB interrupt sources (VBUSTI, WAKEUPI, IDTI and HWUPI), can wake up the MCU. This
sleep mode basically halts all generated clocks, allowing operation of asynchronous modules
only.
Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 94
for details.
When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in “Clock Sources” on page 40.
7.4 Power-save Mode
When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:
52 ATmega32U6/AT90USB64/128
7593H–AVR–11/08