English
Language : 

AT90PWM81_14 Datasheet, PDF (46/327 Pages) ATMEL Corporation – Data and non-volatile program memory
AT90PWM81/161
6.3 ADC Noise Reduction Mode
When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the External Interrupts,
Timer/Counter (if their clock source is external - T0 or T1) and the Watchdog to continue operat-
ing (if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the
other clocks to run.
This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart from the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, a Timer/Counter interrupt, an SPM/EEPROM ready interrupt, an External Level Interrupt
on INT2:0 can wake up the MCU from ADC Noise Reduction mode.
6.4 Power-down Mode
When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the External Oscillator is stopped, while the External Interrupts and
the Watchdog continue operating (if enabled). Only an External Reset, a Watchdog Reset, a
Brown-out Reset, a PSC Interrupt, an External Level Interrupt on INT2:0 can wake up the MCU.
This sleep mode basically halts all generated clocks, allowing operation of asynchronous mod-
ules only.
Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 83
for details.
When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL fuses that define the
Reset Time-out period, as described in “Clock Sources” on page 28.
6.5 Standby Mode
When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.
6.6 Power Reduction Register
The Power Reduction Register, PRR, provides a method to stop the clock to individual peripher-
als to reduce power consumption. The current state of the peripheral is frozen and the I/O
registers can not be read or written. Resources used by the peripheral when stopping the clock
will remain occupied, hence the peripheral should in most cases be disabled before stopping the
clock. Waking up a module, which is done by clearing the bit in PRR, puts the module in the
same state as before shutdown.
A full predictable behavior of a peripheral is not guaranteed during and after a cycle of stopping
and starting of its clock. So its recommended to stop a peripheral before stopping its clock with
PRR register.
Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall
power consumption. In all other sleep modes, the clock is already stopped.
46
7734Q–AVR–02/12