English
Language : 

AM29PDL128G Datasheet, PDF (49/71 Pages) SPANSION – 128 Megabit (8 M x 16-Bit/4 M x 32-Bit) CMOS 3.0 Volt-only, Simultaneous Read/ Write Flash Memory with VersatileIO Control
PRELIMINARY
DQ2: Toggle Bit II
The “Toggle Bit II” on DQ2, when used with DQ6, indi-
cates whether a particular sector is actively erasing
(that is, the Embedded Erase algorithm is in progress),
or whether that sector is erase-suspended. Toggle Bit
II is valid after the rising edge of the final WE# pulse in
the command sequence.
DQ2 toggles when the system reads at addresses
within those sectors that have been selected for era-
sure. (The system may use either OE# or CE# to con-
trol the read cycles.) But DQ2 cannot distinguish
whether the sector is actively erasing or is erase-sus-
pended. DQ6, by comparison, indicates whether the
device is actively erasing, or is in Erase Suspend, but
cannot distinguish which sectors are selected for era-
sure. Thus, both status bits are required for sector and
mode information. Refer to Table 18 to compare out-
puts for DQ2 and DQ6.
Figure 6 shows the toggle bit algorithm in flowchart
form, and “DQ2: Toggle Bit II” on page 48 explains the
algorithm. Figure 21 shows the toggle bit timing dia-
gram. Figure 22 shows the differences between DQ2
and DQ6 in graphical form.
Reading Toggle Bits DQ6/DQ2
Refer to Figure 6 for the following discussion. When-
ever the system initially begins reading toggle bit sta-
tus, it must read DQ31–DQ0 (or DQ15–DQ0 for word
mode) at least twice in a row to determine whether a
toggle bit is toggling. Typically, the system would note
and store the value of the toggle bit after the first read.
After the second read, the system would compare the
new value of the toggle bit with the first. If the toggle bit
is not toggling, the device has completed the program
or erase operation. The system can read array data on
DQ31–DQ0 (or DQ15–DQ0 for word mode) on the fol-
lowing read cycle.
However, if after the initial two read cycles, the system
determines that the toggle bit is still toggling, the sys-
tem also should note whether the value of DQ5 is high
(see “DQ5: Exceeded Timing Limits” on page 48). If it
is, the system should then determine again whether
the toggle bit is toggling, since the toggle bit may have
stopped toggling just as DQ5 went high. If the toggle
bit is no longer toggling, the device has successfully
completed the program or erase operation. If it is still
toggling, the device did not completed the operation
successfully, and the system must write the reset com-
mand to return to reading array data.
The remaining scenario is that the system initially de-
termines that the toggle bit is toggling and DQ5 has
not gone high. The system may continue to monitor
the toggle bit and DQ5 through successive read cy-
cles, determining the status as described in the previ-
ous paragraph. Alternatively, it may choose to perform
other system tasks. In this case, the system must start
at the beginning of the algorithm when it returns to de-
termine the status of the operation (top of Figure 6).
DQ5: Exceeded Timing Limits
DQ5 indicates whether the program or erase time has
exceeded a specified internal pulse count limit. Under these
conditions DQ5 produces a “1,” indicating that the program
or erase cycle was not successfully completed.
The device may output a “1” on DQ5 if the system tries
to program a “1” to a location that was previously pro-
grammed to “0.” Only an erase operation can
change a “0” back to a “1.” Under this condition, the
device halts the operation, and when the timing limit
has been exceeded, DQ5 produces a “1.”
Under both these conditions, the system must write
the reset command to return to the read mode (or to
the erase-suspend-read mode if a bank was previ-
ously in the erase-suspend-program mode).
DQ3: Sector Erase Timer
After writing a sector erase command sequence, the
system may read DQ3 to determine whether or not
erasure has begun. (The sector erase timer does not
apply to the chip erase command.) If additional
sectors are selected for erasure, the entire time-out
also applies after each additional sector erase com-
mand. When the time-out period is complete, DQ3
switches from a “0” to a “1.” If the time between addi-
tional sector erase commands from the system can be
assumed to be less than 50 µs, the system need not
monitor DQ3. Also see “Sector Erase Command Se-
quence” on page 37.
After the sector erase command is written, the system
should read the status of DQ7 (Data# Polling) or DQ6
(Toggle Bit I) to ensure that the device has accepted
the command sequence, and then read DQ3. If DQ3 is
“1,” the Embedded Erase algorithm has begun; all fur-
ther commands (except Erase Suspend) are ignored
until the erase operation is complete. If DQ3 is “0,” the
device accepts additional sector erase commands. To
ensure the command has been accepted, the system
software should check the status of DQ3 prior to and
following each subsequent sector erase command. If
DQ3 is high on the second status check, the last com-
mand might not have been accepted.
Table 18 shows the status of DQ3 relative to the other
status bits.
48
Am29PDL128G
October 28, 2004