English
Language : 

AD9522-4 Datasheet, PDF (18/84 Pages) Analog Devices – 12 LVDS/24 CMOS Output Clock Generator with Integrated 1.6 GHz VCO
AD9522-4
Pin No.
15
16
17
18
19, 59
20
21
22
23
24
25
26
28
29
30
31
33
34
36
37
38
39
42
43
44
45
Input/
Output
I
I
I/O
O
I
I
I
I
I
I
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Pin
Type
3.3 V CMOS
3.3 V CMOS
3.3 V CMOS
3.3 V CMOS
GND
Three-level
logic
Three-level
logic
3.3 V CMOS
3.3 V CMOS
3.3 V CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
Mnemonic
CS
SCLK/SCL
SDIO/SDA
SDO
GND
SP1
SP0
EEPROM
RESET
PD
OUT9 (OUT9A)
OUT9 (OUT9B)
OUT10 (OUT10A)
OUT10 (OUT10B)
OUT11 (OUT11A)
OUT11 (OUT11B)
OUT6 (OUT6A)
OUT6 (OUT6B)
OUT7 (OUT7A)
OUT7 (OUT7B)
OUT8 (OUT8A)
OUT8 (OUT8B)
OUT5 (OUT5B)
OUT5 (OUT5A)
OUT4 (OUT4B)
OUT4 (OUT4A)
Description
Serial Control Port Chip Select; Active Low. This pin has an internal 30 kΩ
pull-up resistor.
Serial Control Port Clock Signal. This pin has an internal 30 kΩ pull-down resistor
in SPI mode but is high impedance in I²C mode.
Serial Control Port Bidirectional Serial Data In/Out.
Serial Control Port Unidirectional Serial Data Out.
Ground Pins.
Select SPI or I²C as the serial interface port and select the I²C slave address in I²C
mode. Three-level logic. This pin is internally biased for the open logic level.
Select SPI or I²C as the serial interface port and select the I²C slave address in I²C
mode. Three-level logic. This pin is internally biased for the open logic level.
Setting this pin high selects the register values stored in the internal EEPROM to
be loaded at reset and/or power-up. Setting this pin low causes the AD9522 to
load the hard-coded default register values at power-up/reset. This pin has an
internal 30 kΩ pull-down resistor.
Chip Reset, Active Low. This pin has an internal 30 kΩ pull-up resistor.
Chip Power-Down, Active Low. This pin has an internal 30 kΩ pull-up resistor.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Rev. 0 | Page 18 of 84