English
Language : 

AD7183 Datasheet, PDF (17/40 Pages) Analog Devices – Advanced Video Decoder with 10-Bit ADC and Component Input Support
ADV7183
Control and Pixel Interface FIFO Modes
When the ADV7183 is configured to operate in this mode, pixel
data generated within the part is buffered by a 512-pixel deep
FIFO. Only active video pixels and control codes are written into
the FIFO; the others have been dropped. In this mode the output
is operating asynchronously and a CLKIN must be provided to
clock pixels out of the FIFO. The CLKIN must operate faster than
the effective data transfer rate into the FIFO. This rate will be
determined by the number of active pixels per line. If the CLKIN
is not above this, the FIFO may overflow. The ADV7183 controls
the FIFO when set to operate in SCAPI mode. DV (data valid) is
internally fed back to the RD (read enable), unlike the synchronous
pixel mode where DV will not indicate the validity of the current
pixel and only acts as an indication of how much data is stored in
the FIFO. DV will go high at the same time as AFF and remain
high until the FIFO is empty.
By internally setting DV to RD the system ensures that the FIFO
never overflows. When using this mode the status of data on the
pixel outputs can be determined by two indicators, DV and QCLK.
DV will go active two clock cycles (LLC1) before valid data appears
on the bus. QCLK is a qualified clock derived from CLKIN, but
will only be present when valid pixel data is output from the FIFO.
DV indicates valid pixel or control code data. Using these two
control signals, the user can differentiate between pixel information
and invalid data. Figure 25 shows the basic timing relationship
for this mode.
The operation of the ADV7183 in CAPI mode is similar to that
of SCAPI mode with the exception that now the FIFO is con-
trolled by the system; the system must monitor the almost full
flag (AFF), the almost empty flag (AEF), and control the FIFO
read enable (RD). Unlike SCAPI mode, the QCLK is not gated
and is therefore continuous. Figure 26 shows the basic timing
relationship of this mode.
PIXEL DATA
DV
CLKIN
DATA
RD
QCLK
AFF
AEF
NOTE
THE POLARITY OF AFF AND AEF ARE CONTROLLED BY THE PFF BIT.
DV POLARITY IS SET BY THE PDV BIT.
Figure 25. SCAPI Output Mode FIFO Operation
CLKIN
QCLK
AFF
AEF
NOTE
THE POLARITY OF AFF AND AEF ARE CONTROLLED BY THE PFF BIT.
Figure 26. CAPI Output Mode FIFO Operation
REV. 0
–17–