English
Language : 

ADSP-BF547_15 Datasheet, PDF (13/102 Pages) Analog Devices – Blackfin Embedded Processor
ADSP-BF542/ADSP-BF544/ADSP-BF547/ADSP-BF548/ADSP-BF549
General-Purpose I/O (GPIO)
Every pin in Port A to Port J can function as a GPIO pin, result-
ing in a GPIO pin count up to 154. While it is unlikely that all
GPIO pins will be used in an application, as all pins have multi-
ple functions, the richness of GPIO functionality guarantees
unrestrictive pin usage. Every pin that is not used by any func-
tion can be configured in GPIO mode on an individual basis.
After reset, all pins are in GPIO mode by default. Since neither
GPIO output nor input drivers are active by default, unused
pins can be left unconnected. GPIO data and direction control
registers provide flexible write-one-to-set and write-one-to-
clear mechanisms so that independent software threads do not
need to protect against each other because of expensive read-
modify-write operations when accessing the same port.
Pin Interrupts
Every port pin on ADSP-BF54x Blackfin processors can request
interrupts in either an edge-sensitive or a level-sensitive manner
with programmable polarity. Interrupt functionality is decou-
pled from GPIO operation. Four system-level interrupt
channels (PINT0, PINT1, PINT2 and PINT3) are reserved for
this purpose. Each of these interrupt channels can manage up to
32 interrupt pins. The assignment from pin to interrupt is not
performed on a pin-by-pin basis. Rather, groups of eight pins
(half ports) can be flexibly assigned to interrupt channels.
Every pin interrupt channel features a special set of 32-bit mem-
ory-mapped registers that enables half-port assignment and
interrupt management. This not only includes masking, identi-
fication, and clearing of requests, it also enables access to the
respective pin states and use of the interrupt latches regardless
of whether the interrupt is masked or not. Most control registers
feature multiple MMR address entries to write-one-to-set or
write-one-to-clear them individually.
PIXEL COMPOSITOR (PIXC)
The pixel compositor (PIXC) provides image overlays with
transparent-color support, alpha blending, and color space con-
version capabilities for output to TFT LCDs and NTSC/PAL
video encoders. It provides all of the control to allow two data
streams from two separate data buffers to be combined,
blended, and converted into appropriate forms for both LCD
panels and digital video outputs. The main image buffer pro-
vides the basic background image, which is presented in the
data stream. The overlay image buffer allows the user to add
multiple foreground text, graphics, or video objects on top of
the main image or video data stream.
ENHANCED PARALLEL PERIPHERAL INTERFACE
(EPPI)
The ADSP-BF54x Blackfin processors provide up to three
enhanced parallel peripheral interfaces (EPPIs), supporting data
widths up to 24 bits. The EPPI supports direct connection to
TFT LCD panels, parallel analog-to-digital and digital-to-ana-
log converters, video encoders and decoders, image sensor
modules and other general-purpose peripherals.
The following features are supported in the EPPI module:
• Programmable data length: 8 bits, 10 bits, 12 bits, 14 bits,
16 bits, 18 bits, and 24 bits per clock.
• Bidirectional and half-duplex port.
• Clock can be provided externally or can be generated
internally.
• Various framed and non-framed operating modes. Frame
syncs can be generated internally or can be supplied by an
external device.
• Various general-purpose modes with zero to three frame
syncs for both receive and transmit directions.
• ITU-656 status word error detection and correction for
ITU-656 receive modes.
• ITU-656 preamble and status word decode.
• Three different modes for ITU-656 receive modes: active
video only, vertical blanking only, and entire field mode.
• Horizontal and vertical windowing for GP 2 and 3 frame
sync modes.
• Optional packing and unpacking of data to/from 32 bits
from/to 8, 16 and 24 bits. If packing/unpacking is enabled,
endianness can be changed to change the order of pack-
ing/unpacking of bytes/words.
• Optional sign extension or zero fill for receive modes.
• During receive modes, alternate even or odd data samples
can be filtered out.
• Programmable clipping of data values for 8-bit transmit
modes.
• RGB888 can be converted to RGB666 or RGB565 for trans-
mit modes.
• Various de-interleaving/interleaving modes for receiv-
ing/transmitting 4:2:2 YCrCb data.
• FIFO watermarks and urgent DMA features.
• Clock gating by an external device asserting the clock gat-
ing control signal.
• Configurable LCD data enable (DEN) output available on
Frame Sync 3.
USB ON-THE-GO DUAL-ROLE DEVICE
CONTROLLER
The USB OTG dual-role device controller (USBDRC) provides
a low-cost connectivity solution for consumer mobile devices
such as cell phones, digital still cameras, and MP3 players,
allowing these devices to transfer data using a point-to-point
USB connection without the need for a PC host. The USBDRC
module can operate in a traditional USB peripheral-only mode
as well as the host mode presented in the On-the-Go (OTG)
supplement to the USB 2.0 specification. In host mode, the USB
module supports transfers at high speed (480 Mbps), full speed
(12 Mbps), and low speed (1.5 Mbps) rates. Peripheral-only
mode supports the high and full speed transfer rates.
Rev. E | Page 13 of 102 | March 2014