English
Language : 

BCM384X120Y300AZZ Datasheet, PDF (16/21 Pages) Vicor Corporation – Isolated Fixed Ratio DC-DC Converter
Input and Output Filter Design
A major advantage of SAC™ systems versus conventional PWM
converters is that the transformers do not require large
functional filters. The resonant LC tank, operated at extreme high
frequency, is amplitude modulated as a function of input voltage
and output current and efficiently transfers charge through the
isolation transformer. A small amount of capacitance embedded
in the input and output stages of the module is sufficient for full
functionality and is key to achieve power density.
This paradigm shift requires system design to carefully evaluate
external filters in order to:
1. Guarantee low source impedance:
To take full advantage of the BCM module’s dynamic
response, the impedance presented to its input terminals
must be low from DC to approximately 5MHz. The
connection of the bus converter module to its power
source should be implemented with minimal distribution
inductance. If the interconnect inductance exceeds
100nH, the input should be bypassed with a RC damper
to retain low source impedance and stable operation.
With an interconnect inductance of 200nH, the RC damper
may be as high as 1µF in series with 0.3Ω. A single
electrolytic or equivalent low-Q capacitor may be used in
place of the series RC bypass.
2. Further reduce input and/or output voltage ripple
without sacrificing dynamic response:
Given the wide bandwidth of the module, the source
response is generally the limiting factor in the overall
system response. Anomalies in the response of the source
will appear at the output of the module multiplied by its
K factor. This is illustrated in Figures 15 and 16.
3. Protect the module from overvoltage transients imposed
by the system that would exceed maximum ratings and
cause failures:
The module input/output voltage ranges shall not be
exceeded. An internal overvoltage lockout function
prevents operation outside of the normal operating input
range. Even during this condition, the powertrain is
exposed to the applied voltage and power MOSFETs must
withstand it. A criterion for protection is the maximum
amount of energy that the input or output switches can
tolerate if avalanched.
Total load capacitance at the output of the BCM module shall not
exceed the specified maximum. Owing to the wide bandwidth
and low output impedance of the module, low-frequency bypass
capacitance and significant energy storage may be more densely
and efficiently provided by adding capacitance at the input of
the module. At frequencies <500kHz the module appears as an
impedance of ROUT between the source and load.
BCM384x120y300Azz
Within this frequency range, capacitance at the input appears as
effective capacitance on the output per the relationship
defined in Eq. 13.
COUT
=
CIN
K2
(13)
This enables a reduction in the size and number of capacitors used
in a typical system.
Thermal Considerations
VI Chip® products are multi-chip modules whose temperature
distribution varies greatly for each part number as well as with the
input / output conditions, thermal management and environmental
conditions. Maintaining the top of the BCM384x120y300A00 case
to less than 100ºC will keep all junctions within the VI Chip module
below 125ºC for most applications.
The percent of total heat dissipated through the top surface
versus through the J-lead is entirely dependent on the particular
mechanical and thermal environment. The heat dissipated through
the top surface is typically 60%. The heat dissipated through the
J-lead onto the PCB surface is typically 40%. Use 100% top surface
dissipation when designing for a conservative cooling solution.
It is not recommended to use a VI Chip module for an extended
period of time at full load without proper heat sinking.
BCM® Bus Converter
Page 16 of 21
Rev 1.5
08/2016
vicorpower.com
800 927.9474