English
Language : 

LM3S9BN6_16 Datasheet, PDF (688/1385 Pages) Texas Instruments – Stellaris LM3S9BN6 Microcontroller
Universal Asynchronous Receivers/Transmitters (UARTs)
13.3.1
13.3.2
UARTCTL. If the UART is disabled during a TX or RX operation, the current transaction is completed
prior to the UART stopping.
The UART module also includes a serial IR (SIR) encoder/decoder block that can be connected to
an infrared transceiver to implement an IrDA SIR physical layer. The SIR function is programmed
using the UARTCTL register.
Transmit/Receive Logic
The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO.
The control logic outputs the serial bit stream beginning with a start bit and followed by the data bits
(LSB first), parity bit, and the stop bits according to the programmed configuration in the control
registers. See Figure 13-2 on page 688 for details.
The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start
pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also
performed, and their status accompanies the data that is written to the receive FIFO.
Figure 13-2. UART Character Frame
UnTX
1
0
n
Start
LSB
MSB
5-8 data bits
1-2
stop bits
Parity bit
if enabled
Baud-Rate Generation
The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part.
The number formed by these two values is used by the baud-rate generator to determine the bit
period. Having a fractional baud-rate divisor allows the UART to generate all the standard baud
rates.
The 16-bit integer is loaded through the UART Integer Baud-Rate Divisor (UARTIBRD) register
(see page 708) and the 6-bit fractional part is loaded with the UART Fractional Baud-Rate Divisor
(UARTFBRD) register (see page 709). The baud-rate divisor (BRD) has the following relationship
to the system clock (where BRDI is the integer part of the BRD and BRDF is the fractional part,
separated by a decimal place.)
BRD = BRDI + BRDF = UARTSysClk / (ClkDiv * Baud Rate)
where UARTSysClk is the system clock connected to the UART, and ClkDiv is either 16 (if HSE
in UARTCTL is clear) or 8 (if HSE is set).
The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the UARTFBRD register)
can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and
adding 0.5 to account for rounding errors:
UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)
The UART generates an internal baud-rate reference clock at 8x or 16x the baud-rate (referred to
as Baud8 and Baud16, depending on the setting of the HSE bit (bit 5) in UARTCTL). This reference
clock is divided by 8 or 16 to generate the transmit clock, and is used for error detection during
receive operations. Note that the state of the HSE bit has no effect on clock generation in ISO 7816
smart card mode (when the SMART bit in the UARTCTL register is set).
Along with the UART Line Control, High Byte (UARTLCRH) register (see page 710), the UARTIBRD
and UARTFBRD registers form an internal 30-bit register. This internal register is only updated
688
July 03, 2014
Texas Instruments-Production Data