English
Language : 

COP888XG_CS Datasheet, PDF (43/55 Pages) Texas Instruments – COP888xG/CS Family 8-Bit CMOS ROM Based Microcontrollers with 4k to 24k Memory, Comparators and USART
Memory Map (Continued)
Address
S/ADD REG
xxD6
xxD7
xxD8
xxD9
xxDA
xxDB
xxDC
xxDD to xxDF
xxE0 to xxE5
xxE6
xxE7
xxE8
xxE9
xxEA
xxEB
Contents
Port G Input Pins (Read Only)
Port I Input Pins (Read Only) (Actually
reads Port F input pins)
Port C Data Register
Port C Configuration Register
Port C Input Pins (Read Only)
Reserved for Port C
Port D
Reserved for Port D
Reserved for EE Control Registers
Timer T1 Autoload Register T1RB Lower
Byte
Timer T1 Autoload Register T1RB Upper
Byte
ICNTRL Register
MICROWIRE/PLUS Shift Register
Timer T1 Lower Byte
Timer T1 Upper Byte
Addressing Modes
There are ten addressing modes, six for operand addressing
and four for transfer of control.
OPERAND ADDRESSING MODES
Register Indirect
This is the “normal” addressing mode. The operand is the
data memory addressed by the B pointer or X pointer.
Register Indirect (with auto post increment or
decrement of pointer)
This addressing mode is used with the LD and X instruc-
tions. The operand is the data memory addressed by the B
pointer or X pointer. This is a register indirect mode that au-
tomatically post increments or decrements the B or X regis-
ter after executing the instruction.
Direct
The instruction contains an 8-bit address field that directly
points to the data memory for the operand.
Immediate
The instruction contains an 8-bit immediate field as the oper-
and.
Short Immediate
This addressing mode is used with the Load B Immediate in-
struction. The instruction contains a 4-bit immediate field as
the operand.
Indirect
This addressing mode is used with the LAID instruction. The
contents of the accumulator are used as a partial address
(lower 8 bits of PC) for accessing a data operand from the
program memory.
Address
Contents
S/ADD REG
xxEC
Timer T1 Autoload Register T1RA Lower
Byte
xxED
Timer T1 Autoload Register T1RA Upper
Byte
xxEE
CNTRL Control Register
xxEF
PSW Register
xxF0 to FB
On-Chip RAM Mapped as Registers
xxFC
X Register
xxFD
SP Register
xxFE
B Register
xxFF
S Register
0100–017F On-Chip 128 RAM Bytes
0200–027F
On-Chip 128 RAM Bytes (Reads as
undefined data on COP8SGE)
0300–037F
On-Chip 128 RAM Bytes (Reads as
undefined data on COP8SGE)
Note: Reading memory locations 0070H–007FH (Segment 0) will return all
ones. Reading unused memory locations 0080H–00AFH (Segment 0)
will return undefined data. Reading memory locations from other Seg-
ments (i.e., Segment 2, Segment 3, … etc.) will return undefined data.
TRANSFER OF CONTROL ADDRESSING MODES
Relative
This mode is used for the JP instruction, with the instruction
field being added to the program counter to get the new pro-
gram location. JP has a range from −31 to +32 to allow a
1-byte relative jump (JP + 1 is implemented by a NOP in-
struction). There are no “pages” when using JP, since all 15
bits of PC are used.
Absolute
This mode is used with the JMP and JSR instructions, with
the instruction field of 12 bits replacing the lower 12 bits of
the program counter (PC). This allows jumping to any loca-
tion in the current 4k program memory segment.
Absolute Long
This mode is used with the JMPL and JSRL instructions, with
the instruction field of 15 bits replacing the entire 15 bits of
the program counter (PC). This allows jumping to any loca-
tion up to 32k in the program memory space.
Indirect
This mode is used with the JID instruction. The contents of
the accumulator are used as a partial address (lower 8 bits of
PC) for accessing a location in the program memory. The
contents of this program memory location serve as a partial
address (lower 8 bits of PC) for the jump to the next instruc-
tion.
Note: The VIS is a special case of the Indirect Transfer of Control addressing
mode, where the double byte vector associated with the interrupt is
transferred from adjacent addresses in the program memory into the
program counter (PC) in order to jump to the associated interrupt ser-
vice routine.
www.national.com
42