English
Language : 

TPA2016D2RTJR Datasheet, PDF (29/39 Pages) Texas Instruments – 2.8-W/Ch Stereo Class-D Audio Amplifier with Dynamic Range Compression and AGC
TPA2016D2
www.ti.com........................................................................................................................................................ SLOS524D – JUNE 2008 – REVISED AUGUST 2009
EFFICIENCY AND THERMAL INFORMATION
The maximum ambient temperature depends on the heat-sinking ability of the PCB system. The derating factor
for the packages are shown in the dissipation rating table. Converting this to θJA for the WCSP package:
100°C/W
(7)
Given θJA of 100°C/W, the maximum allowable junction temperature of 150°C, and the maximum internal
dissipation of 0.4 W (0.2 W per channel) for 1.5 W per channel, 8-Ω load, 5-V supply, from Figure 15, the
maximum ambient temperature can be calculated with the following equation.
TAMax = TJMax - qJAPDMAX = 150 - 100 (0.4) = 110°C
(8)
Equation 8 shows that the calculated maximum ambient temperature is 110°C at maximum power dissipation
with a 5-V supply and 8-Ω a load. The TPA2016D2 is designed with thermal protection that turns the device off
when the junction temperature surpasses 150°C to prevent damage to the IC. Also, using speakers more
resistive than 8-Ω dramatically increases the thermal performance by reducing the output current and increasing
the efficiency of the amplifier.
OPERATION WITH DACS AND CODECS
In using Class-D amplifiers with CODECs and DACs, sometimes there is an increase in the output noise floor
from the audio amplifier. This occurs when mixing of the output frequencies of the CODEC/DAC mix with the
switching frequencies of the audio amplifier input stage. The noise increase can be solved by placing a low-pass
filter between the CODEC/DAC and audio amplifier. This filters off the high frequencies that cause the problem
and allow proper performance. See the functional block diagram.
FILTER FREE OPERATION AND FERRITE BEAD FILTERS
A ferrite bead filter can often be used if the design is failing radiated emissions without an LC filter and the
frequency sensitive circuit is greater than 1 MHz. This filter functions well for circuits that just have to pass FCC
and CE because FCC and CE only test radiated emissions greater than 30 MHz. When choosing a ferrite bead,
choose one with high impedance at high frequencies, and low impedance at low frequencies. In addition, select a
ferrite bead with adequate current rating to prevent distortion of the output signal.
Use an LC output filter if there are low frequency (< 1 MHz) EMI sensitive circuits and/or there are long leads
from amplifier to speaker. Figure 42 shows typical ferrite bead and LC output filters.
OUTP
Ferrite
Chip Bead
OUTN
Ferrite
Chip Bead
1 nF
1 nF
Figure 42. Typical Ferrite Bead Filter (Chip bead example: TDK: MPZ1608S221A)
Copyright © 2008–2009, Texas Instruments Incorporated
29
Product Folder Link(s): TPA2016D2