English
Language : 

ADS5440-EP Datasheet, PDF (24/29 Pages) Texas Instruments – 13-BIT 210-MSPS ANALOG-TO-DIGITAL CONVERTER
ADS5440-EP
SGLS359 – AUGUST 2006
www.ti.com
Application Information (continued)
Power Supplies
The use of low noise power supplies with adequate decoupling is recommended. Linear supplies are the
preferred choice versus switched ones, which tend to generate more noise components that can be coupled to
the ADS5440.
The ADS5440 uses two power supplies. For the analog portion of the design, a 5-V AVDD is used, while for the
digital outputs supply (DRVDD) we recommend the use of 3.3 V. All the ground pins are marked as GND,
although AGND pins and DRGND pins are not tied together inside the package.
Layout Information
The evaluation board represents a good guideline of how to layout the board to obtain the maximum
performance out of the ADS5440. General design rules as the use of multilayer boards, single ground plane for
ADC ground connections and local decoupling ceramic chip capacitors should be applied. The input traces
should be isolated from any external source of interference or noise including the digital outputs, as well as the
clock traces. The clock signal traces should also be isolated from other signals, especially in applications where
low jitter is required as high IF sampling.
Besides performance oriented rules, care has to be taken when considering the heat dissipation out of the
device. The thermal heatsink should be soldered to the board as described in the PowerPad Package section.
PowerPAD™ Package
The PowerPAD package is a thermally-enhanced standard size IC package designed to eliminate the use of
bulky heatsinks and slugs traditionally used in thermal packages. This package can be easily mounted using
standard printed circuit board (PCB) assembly techniques, and can be removed and replaced using standard
repair procedures.
The PowerPAD package is designed so that the leadframe die pad (or thermal pad) is exposed on the bottom of
the IC. This provides an extremely low thermal resistance path between the die and the exterior of the package.
The thermal pad on the bottom of the IC can then be soldered directly to the PCB using the PCB as a heatsink.
Assembly Process
1. Prepare the PCB top-side etch pattern including etch for the leads, as well as the thermal pad as illustrated
in the Mechanical Data section.
2. Place a 6-by-6 array of thermal vias in the thermal pad area. These holes should be 13 mils in diameter.
The small size prevents wicking of the solder through the holes.
3. It is recommended to place a small number of 25-mil diameter holes under the package, but outside the
thermal pad area to provide an additional heat path.
4. Connect all holes (both those inside and outside the thermal pad area) to an internal copper plane (such as
a ground plane).
5. Do not use the typical web or spoke via connection pattern when connecting the thermal vias to the ground
plane. The spoke pattern increases the thermal resistance to the ground plane.
6. The top-side solder mask should leave exposed the terminals of the package and the thermal pad area.
7. Cover the entire bottom side of the PowerPAD vias to prevent solder wicking.
8. Apply solder paste to the exposed thermal pad area and all of the package terminals.
For more detailed information regarding the PowerPAD package and its thermal properties, see either the
SLMA004 application brief, PowerPAD Made Easy, or the technical brief, PowerPAD Thermally Enhanced
Package SLMA002.
24
Submit Documentation Feedback