English
Language : 

LM3S1625 Datasheet, PDF (162/719 Pages) Texas Instruments – Stellaris LM3S1625 Microcontroller
JTAG Interface
complete switch sequence should consist of the following transactions on the TCK/SWCLK and
TMS/SWDIO signals:
1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO High to ensure that both JTAG and SWD
are in their reset states.
2. Send the 16-bit JTAG-to-SWD switch command, 0xE79E, on TMS/SWDIO.
3. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO High to ensure that if SWJ-DP was already
in SWD mode before sending the switch sequence, the SWD goes into the line reset state.
To verify that the Debug Access Port (DAP) has switched to the Serial Wire Debug (SWD) operating
mode, perform a SWD READID operation. The ID value can be compared against the device's
known ID to verify the switch.
SWD-to-JTAG Switching
To switch the operating mode of the Debug Access Port (DAP) from SWD to JTAG mode, the
external debug hardware must send a switch command to the microcontroller. The 16-bit TMS/SWDIO
command for switching to JTAG mode is defined as b1110.0111.0011.1100, transmitted LSB first.
This command can also be represented as 0xE73C when transmitted LSB first. The complete switch
sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:
1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO High to ensure that both JTAG and SWD
are in their reset states.
2. Send the 16-bit SWD-to-JTAG switch command, 0xE73C, on TMS/SWDIO.
3. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO High to ensure that if SWJ-DP was already
in JTAG mode before sending the switch sequence, the JTAG goes into the Test Logic Reset
state.
To verify that the Debug Access Port (DAP) has switched to the JTAG operating mode, set the
JTAG Instruction Register (IR) to the IDCODE instruction and shift out the Data Register (DR). The
DR value can be compared against the device's known IDCODE to verify the switch.
4.4 Initialization and Configuration
After a Power-On-Reset or an external reset (RST), the JTAG pins are automatically configured for
JTAG communication. No user-defined initialization or configuration is needed. However, if the user
application changes these pins to their GPIO function, they must be configured back to their JTAG
functionality before JTAG communication can be restored. This is done by enabling the four JTAG
pins (PC[3:0]) for their alternate function using the GPIOAFSEL register. In addition to enabling
the alternate functions, any other changes to the GPIO pad configurations on the four JTAG pins
(PC[3:0]) should be reverted to their default settings.
4.5 Register Descriptions
There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The
registers within the JTAG controller are all accessed serially through the TAP Controller. The registers
can be broken down into two main categories: Instruction Registers and Data Registers.
162
July 17, 2014
Texas Instruments-Production Data