English
Language : 

LP3875EMP-18 Datasheet, PDF (12/25 Pages) Texas Instruments – LP3872/LP3875 1.5A Fast Ultra Low Dropout Linear Regulators
LP3872, LP3875
SNVS227F – FEBRUARY 2003 – REVISED APRIL 2013
www.ti.com
DROPOUT VOLTAGE
The dropout voltage of a regulator is defined as the minimum input-to-output differential required to stay within
2% of the nominal output voltage. For CMOS LDOs, the dropout voltage is the product of the load current and
the Rds(on) of the internal MOSFET.
REVERSE CURRENT PATH
The internal MOSFET in LP3872 and LP3875 has an inherent parasitic diode. During normal operation, the input
voltage is higher than the output voltage and the parasitic diode is reverse biased. However, if the output is
pulled above the input in an application, then current flows from the output to the input as the parasitic diode gets
forward biased. The output can be pulled above the input as long as the current in the parasitic diode is limited to
200mA continuous and 1A peak.
POWER DISSIPATION/HEATSINKING
LP3872 and LP3875 can deliver a continuous current of 1.5A over the full operating temperature range. A
heatsink may be required depending on the maximum power dissipation and maximum ambient temperature of
the application. Under all possible conditions, the junction temperature must be within the range specified under
operating conditions. The total power dissipation of the device is given by:
PD = (VIN−VOUT)IOUT+ (VIN)IGND
where IGND is the operating ground current of the device (specified under Electrical Characteristics).
The maximum allowable temperature rise (TRmax) depends on the maximum ambient temperature (TAmax) of the
application, and the maximum allowable junction temperature (TJmax): TRmax = TJmax− TAmax
The maximum allowable value for junction to ambient Thermal Resistance, θJA, can be calculated using the
formula:
θJA = TRmax / PD
LP3872 and LP3875 are available in TO-220 and DDPAK/TO-263 packages. The thermal resistance depends on
amount of copper area or heat sink, and on air flow. If the maximum allowable value of θJA calculated above is ≥
60 °C/W for TO-220 package and ≥ 60 °C/W for DDPAK/TO-263 package no heatsink is needed since the
package can dissipate enough heat to satisfy these requirements. If the value for allowable θJA falls below these
limits, a heat sink is required.
HEATSINKING TO-220 PACKAGE
The thermal resistance of a TO-220 package can be reduced by attaching it to a heat sink or a copper plane on
a PC board. If a copper plane is to be used, the values of θJA will be same as shown in next section for
DDPAK/TO-263 package.
The heatsink to be used in the application should have a heatsink to ambient thermal resistance,θHA≤ θJA − θCH −
θJC.
In this equation, θCH is the thermal resistance from the case to the surface of the heat sink and θJC is the thermal
resistance from the junction to the surface of the case. θJC is about 3°C/W for a TO-220 package. The value for
θCH depends on method of attachment, insulator, etc. θCH varies between 1.5°C/W to 2.5°C/W. If the exact value
is unknown, 2°C/W can be assumed.
HEATSINKING DDPAK/TO-263 PACKAGE
The DDPAK/TO-263 package uses the copper plane on the PCB as a heatsink. The tab of these packages are
soldered to the copper plane for heat sinking. Figure 21 shows a curve for the θJA of DDPAK/TO-263 package for
different copper area sizes, using a typical PCB with 1 ounce copper and no solder mask over the copper area
for heat sinking.
12
Submit Documentation Feedback
Copyright © 2003–2013, Texas Instruments Incorporated
Product Folder Links: LP3872 LP3875