English
Language : 

ADS8341_14 Datasheet, PDF (12/25 Pages) Texas Instruments – 16-Bit, 4-Channel Serial Output Sampling ANALOG-TO-DIGITAL CONVERTER
REFERENCE INPUT
The external reference sets the analog input range. The
ADS8341 will operate with a reference in the range of
500mV to +VCC. Keep in mind that the analog input is the
difference between the +IN input and the –IN input, see
Figure 2. For example, in the single-ended mode, a 1.25V
reference, with the COM pin grounded, the selected input
channel (CH0 - CH3) will properly digitize a signal in the
range of 0V to 1.25V. If the COM pin is connected to 0.5V,
the input range on the selected channel is 0.5V to 1.75V.
There are several critical items concerning the reference
input and its wide voltage range. As the reference voltage is
reduced, the analog voltage weight of each digital output
code is also reduced. This is often referred to as the LSB
(least significant bit) size and is equal to the reference
voltage divided by 65,536. Any offset or gain error inherent
in the A/D converter will appear to increase, in terms of LSB
size, as the reference voltage is reduced. For example, if the
offset of a given converter is 2LSBs with a 2.5V reference,
then it will typically be 10LSBs with a 0.5V reference. In
each case, the actual offset of the device is the same, 76µV.
Likewise, the noise or uncertainty of the digitized output will
increase with lower LSB size. With a reference voltage of
500mV, the LSB size is 7.6µV. This level is below the
internal noise of the device. As a result, the digital output
code will not be stable and vary around a mean value by a
number of LSBs. The distribution of output codes will be
gaussian and the noise can be reduced by simply averaging
consecutive conversion results or applying a digital filter.
With a lower reference voltage, care should be taken to
provide a clean layout including adequate bypassing, a clean
(low-noise, low-ripple) power supply, a low-noise reference,
and a low-noise input signal. Because the LSB size is lower,
the converter will also be more sensitive to nearby digital
signals and electromagnetic interference.
The voltage into the VREF input is not buffered and directly
drives the Capacitor Digital-to-Analog Converter (CDAC)
portion of the ADS8341. Typically, the input current is
13µA with a 2.5V reference. This value will vary by
microamps depending on the result of the conversion. The
reference current diminishes directly with both conversion
rate and reference voltage. As the current from the reference
is drawn on each bit decision, clocking the converter more
quickly during a given conversion period will not reduce
overall current drain from the reference.
DIGITAL INTERFACE
Figure 3 shows the typical operation of the ADS8341’s
digital interface. This diagram assumes that the source of the
digital signals is a microcontroller or digital signal processor
with a basic serial interface (note that the digital inputs are
over-voltage tolerant up to 5.5V, regardless of +VCC). Each
communication between the processor and the converter
consists of eight clock cycles. One complete conversion can
be accomplished with three serial communications, for a
total of 24 clock cycles on the DCLK input.
The first eight cycles are used to provide the control byte via
the DIN pin. When the converter has enough information
about the following conversion to set the input multiplexer
appropriately, it enters the acquisition (sample) mode. After
three more clock cycles, the control byte is complete and the
converter enters the conversion mode. At this point, the
input sample-and-hold goes into the hold mode. The next 16
clock cycles accomplish the actual analog-to-digital conver-
sion.
Control Byte
Also shown in Figure 3 is the placement and order of the
control bits within the control byte. Tables III and IV give
detailed information about these bits. The first bit, the ‘S’
bit, must always be HIGH and indicates the start of the
control byte. The ADS8341 will ignore inputs on the DIN
pin until the start bit is detected. The next three bits (A2 -
A0) select the active input channel or channels of the input
multiplexer (see Tables I and II and Figure 2).
Bit 7
(MSB)
S
Bit 6
A2
Bit 5
A1
Bit 4
A0
Bit 3 Bit 2 Bit 1
— SGL/DIF PD1
Bit 0
(LSB)
PD0
TABLE III. Order of the Control Bits in the Control Byte.
CS
DCLK
DIN
BUSY
DOUT
1
Idle
S A2 A1 A0
(START)
tACQ
8
1
Acquire
SGL/
DIF
PD1
PD0
8
1
Conversion
8
1
Idle
S A2 A1 A0
(START)
8
Acquire
SGL/
DIF
PD1
PD0
1
Conversion
15 14 13 12 11 10 9 8
(MSB)
7654321
0
(LSB)
Zero Filled...
15 14
(MSB)
FIGURE 3. Conversion Timing, 24-Clocks per Conversion, 8-Bit Bus Interface. No DCLK delay required with dedicated
serial port.
12
ADS8341
SBAS136D