English
Language : 

LP38511-ADJ_16 Datasheet, PDF (10/23 Pages) Texas Instruments – 800mA Fast-Transient Response Adjustable Low-Dropout Linear Voltage Regulator
LP38511-ADJ
SNVS545D – JANUARY 2009 – REVISED APRIL 2013
www.ti.com
SETTING THE OUTPUT VOLTAGE
The output voltage is set using the external resistive divider R1 and R2. The output voltage is given by the
formula:
VOUT = VADJ x (1 + (R1/R2))
(1)
The resistors used for R1 and R2 should be high quality, tight tolerance, and with matching temperature
coefficients. It is important to remember that, although the value of VADJ is specified, the final value of VOUT is
not. The use of low quality resistors for R1 and R2 can easily produce a VOUT value that is unacceptable.
It is recommended that the values selected for R1 and R2 are such that the parallel value is less than 1.00 kΩ.
This is to reduce the possibility of any internal parasitic capacitances on the ADJ pin from creating an
undesirable phase shift that may interfere with device stability.
( (R1 x R2) / (R1 + R2) ) ≤ 1.00 kΩ
(2)
FEED FORWARD CAPACITOR, CFF
When using a ceramic capacitor for COUT, the typical ESR value will be too small to provide any meaningful
positive phase compensation, FZ, to offset the internal negative phase shifts in the gain loop.
FZ = 1 / (2 x π x COUT x ESR)
(3)
A capacitor placed across the gain resistor R1 will provide additional phase margin to improve load transient
response of the device. This capacitor, CFF, in parallel with R1, will form a zero in the loop response given by the
formula:
FZ = 1 / (2 x π x CFF x R1)
(4)
For optimum load transient response select CFF so the zero frequency, FZ, falls between 20 kHz and 40 kHz.
CFF = 1 / (2 x π x R1 x FZ)
(5)
The phase lead provided by CFF diminishes as the DC gain approaches unity, or VOUT approaches VADJ. This is
because CFF also forms a pole with a frequency of:
FP = 1 / (2 x π x CFF x (R1 || R2) )
(6)
It's important to note that at higher output voltages, where R1 is much larger than R2, the pole and zero are far
apart in frequency. At lower output voltages the frequency of the pole and the zero mover closer together. The
phase lead provided from CFF diminishes quickly as the output voltage is reduced, and has no effect when VOUT
= VADJ. For this reason, relying on this compensation technique alone is adequate only for higher output
voltages.
Table 1 lists some suggested, best fit, standard ±1% resistor values for R1 and R2, and a standard ±10%
capacitor values for CFF, for a range of VOUT values. Other values of R1, R2, and CFF are available that will give
similar results.
VOUT
0.80V
1.00V
1.20V
1.50V
1.80V
2.00V
2.50V
3.00V
3.30V
R1
1.07 kΩ
1.00 kΩ
1.40 kΩ
2.00 kΩ
2.94 kΩ
1.02 kΩ
1.02 kΩ
1.00 kΩ
2.00 kΩ
Table 1.
R2
1.78 kΩ
1.00 kΩ
1.00 kΩ
1.00 kΩ
1.13 kΩ
340Ω
255Ω
200Ω
357Ω
CFF
4700 pF
4700 pF
3300 pF
2700 pF
1500 pF
4700 pF
4700 pF
4700 pF
2700 pF
FZ
31.6 kHz
33.8 kHz
34.4 kHz
29.5 kHz
36.1 kHz
33.2 kHz
33.2 kHz
33.8 kHz
29.5 kHz
10
Submit Documentation Feedback
Copyright © 2009–2013, Texas Instruments Incorporated
Product Folder Links: LP38511-ADJ