English
Language : 

LMC6484AIMX Datasheet, PDF (6/24 Pages) Texas Instruments – LMC6484 CMOS Quad Rail-to-Rail Input and Output Operational Amplifier
AC Electrical Characteristics (Continued)
Note 2: Human body model, 1.5 kΩ in series with 100 pF. All pins rated per method 3015.6 of MIL-STD-883. This is a class 2 device rating.
Note 3: Applies to both single supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the
maximum allowed junction temperature of 150˚C. Output currents in excess of ±30 mA over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any ambient temperature is
PD = (TJ(max) − TA)/θJA. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: V+ = 15V, VCM = 7.5V and RL connected to 7.5V. For Sourcing tests, 7.5V ≤ VO ≤ 11.5V. For Sinking tests, 3.5V ≤ VO ≤ 7.5V.
Note 8: Do not short circuit output to V+, when V+ is greater than 13V or reliability will be adversely affected.
Note 9: V+ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of either the positive or negative slew rates.
Note 10: Input referred, V+ = 15V and RL = 100 kΩ connected to 7.5V. Each amp excited in turn with 1 kHz to produce VO = 12 VPP.
Note 11: Connected as Voltage Follower with 2V step input. Number specified is the slower of either the positive or negative slew rates.
Note 12: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 13: Guaranteed limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.
Note 14: For guaranteed Military Temperature Range parameters see RETSMC6484X.
Typical Performance Characteristics VS = +15V, Single Supply, TA = 25˚C unless otherwise
specified
Supply Current vs
Supply Voltage
Input Current vs
Temperature
Sourcing Current vs
Output Voltage
DS011714-39
Sourcing Current vs
Output Voltage
DS011714-40
Sourcing Current vs
Output Voltage
Sinking Current vs
Output Voltage
DS011714-41
DS011714-42
DS011714-43
DS011714-44
5
www.national.com