English
Language : 

TPS54260_1 Datasheet, PDF (30/47 Pages) Texas Instruments – 3.5V to 60V INPUT, 2.5A, STEP DOWN CONVERTER WITH ECO-MODE™
TPS54260
SLVSA86 – MARCH 2010
www.ti.com
Figure 49. 3.3V Output TPS54260 Design Example.
Output Inductor Selection (LO)
To calculate the minimum value of the output inductor, use Equation 28.
KIND is a coefficient that represents the amount of inductor ripple current relative to the maximum output current.
The inductor ripple current will be filtered by the output capacitor. Therefore, choosing high inductor ripple
currents will impact the selection of the output capacitor since the output capacitor must have a ripple current
rating equal to or greater than the inductor ripple current. In general, the inductor ripple value is at the discretion
of the designer; however, the following guidelines may be used.
For designs using low ESR output capacitors such as ceramics, a value as high as KIND = 0.3 may be used.
When using higher ESR output capacitors, KIND = 0.2 yields better results. Since the inductor ripple current is
part of the PWM control system, the inductor ripple current should always be greater than 150 mA for
dependable operation. In a wide input voltage regulator, it is best to choose an inductor ripple current on the
larger side. This allows the inductor to still have a measurable ripple current with the input voltage at its
minimum.
For this design example, use KIND = 0.3 and the minimum inductor value is calculated to be 11 mH. For this
design, a nearest standard value was chosen: 10 mH. For the output filter inductor, it is important that the RMS
current and saturation current ratings not be exceeded. The RMS and peak inductor current can be found from
Equation 30 and Equation 31.
For this design, the RMS inductor current is 2.51 A and the peak inductor current is 2.913 A. The chosen
inductor is a Coilcraft MSS1038-103NLB . It has a saturation current rating of 4.52 A and an RMS current rating
of 4.05 A.
As the equation set demonstrates, lower ripple currents will reduce the output voltage ripple of the regulator but
will require a larger value of inductance. Selecting higher ripple currents will increase the output voltage ripple of
the regulator but allow for a lower inductance value.
The current flowing through the inductor is the inductor ripple current plus the output current. During power up,
faults or transient load conditions, the inductor current can increase above the calculated peak inductor current
level calculated above. In transient conditions, the inductor current can increase up to the switch current limit of
the device. For this reason, the most conservative approach is to specify an inductor with a saturation current
rating equal to or greater than the switch current limit rather than the peak inductor current.
Lo min = Vinmax - Vout ´
Vout
Io ´ KIND
Vinmax ´ ƒsw
(28)
30
Submit Documentation Feedback
Product Folder Link(s): TPS54260
Copyright © 2010, Texas Instruments Incorporated