English
Language : 

LP3962_15 Datasheet, PDF (15/34 Pages) Texas Instruments – 1.5A Fast Ultra Low Dropout Linear Regulators
LP3962, LP3965
www.ti.com
SNVS066H – MAY 2000 – REVISED APRIL 2013
where IGND is the operating ground current of the device (specified under Electrical Characteristics).
The maximum allowable temperature rise (TRmax) depends on the maximum ambient temperature (TAmax) of the
application, and the maximum allowable junction temperature(TJmax):
TRmax = TJmax− TAmax
The maximum allowable value for junction to ambient Thermal Resistance, θJA, can be calculated using the
formula:
θJA = TRmax / PD
LP3962 and LP3965 are available in TO-220, SFM/TO-263, and SOT-223 packages. The thermal resistance
depends on amount of copper area or heat sink, and on air flow. If the maximum allowable value of θJA
calculated above is ≥ 60 °C/W for TO-220 package, ≥60 °C/W for SFM/TO-263 package, and ≥ 140 °C/W for
SOT-223 package, no heatsink is needed since the package can dissipate enough heat to satisfy these
requirements. If the value for allowable θJA falls below these limits, a heat sink is required.
HEATSINKING TO-220 PACKAGES
The thermal resistance of a TO-220 package can be reduced by attaching it to a heat sink or a copper plane on
a PC board. If a copper plane is to be used, the values of θJA will be same as shown in next section for SFM/TO-
263 package.
The heatsink to be used in the application should have a heatsink to ambient thermal resistance,
θHA≤ θJA − θCH − θJC.
In this equation, θCH is the thermal resistance from the junction to the surface of the heat sink and θJC is the
thermal resistance from the junction to the surface of the case. θJC is about 3°C/W for a TO-220 package. The
value for θCH depends on method of attachment, insulator, etc. θCH varies between 1.5°C/W to 2.5°C/W. If the
exact value is unknown, 2°C/W can be assumed.
HEATSINKING SFM/TO-263 AND SOT-223 PACKAGES
The SFM/TO-263 and SOT-223 packages use the copper plane on the PCB as a heatsink. The tab of these
packages are soldered to the copper plane for heat sinking. Figure 24 shows a curve for the θJA of SFM/TO-263
package for different copper area sizes, using a typical PCB with 1 ounce copper and no solder mask over the
copper area for heat sinking.
Figure 24. θJA vs Copper(1 Ounce) Area for SFM/TO-263 package
As shown in the figure, increasing the copper area beyond 1 square inch produces very little improvement. The
minimum value for θJA for the SFM/TO-263 packag mounted to a PCB is 32°C/W.
Figure 25 shows the maximum allowable power dissipation for SFM/TO-263 packages for different ambient
temperatures, assuming θJA is 35°C/W and the maximum junction temperature is 125°C.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LP3962 LP3965
Submit Documentation Feedback
15