English
Language : 

LM5035C_15 Datasheet, PDF (14/35 Pages) Texas Instruments – PWM Controller with Integrated Half-Bridge and SyncFET Drivers
LM5035C
SNVS631C – JANUARY 2010 – REVISED MARCH 2013
www.ti.com
REF
+
LM4041
Voltage
feedback
_
COMP
Potential across
Optocoupler detector
is constant (approx. 4.3V)
5V
FEED-FORWARD RAMP
5k
1V
1:1
PWM
COMPARATOR
SOFT-START
LM5035C
Figure 16. Optocoupler to COMP Interface
Soft-Start
The soft-start circuit allows the regulator to gradually reach a steady state operating point, thereby reducing start-
up stresses and current surges. When bias is supplied to the LM5035C, the SS pin capacitor is discharged by an
internal MOSFET. When the UVLO, VCC and REF pins reach their operating thresholds, the SS capacitor is
released and charged with a 110 µA current source. The PWM comparator control voltage is clamped to the SS
pin voltage by an internal amplifier. When the PWM comparator input reaches 1V, output pulses commence with
slowly increasing duty cycle. The voltage at the SS pin eventually increases to 5V, while the voltage at the PWM
comparator increases to the value required for regulation as determined by the voltage feedback loop.
One method to shutdown the regulator is to ground the SS pin. This forces the internal PWM control signal to
ground, reducing the output duty cycle quickly to zero. Releasing the SS pin begins a soft-start cycle and normal
operation resumes. A second shutdown method is discussed in the UVLO section.
PWM Comparator
The pulse width modulation (PWM) comparator compares the voltage ramp signal at the RAMP pin to the loop
error signal. This comparator is optimized for speed in order to achieve minimum controllable duty cycles. The
loop error signal is received from the external feedback and isolation circuit is in the form of a control current into
the COMP pin. The COMP pin current is internally mirrored by a matched pair of NPN transistors which sink
current through a 5 kΩ resistor connected to the 5V reference. The resulting control voltage passes through a 1V
level shift before being applied to the PWM comparator.
An opto-coupler detector can be connected between the REF pin and the COMP pin. Because the COMP pin is
controlled by a current input, the potential difference across the optocoupler detector is nearly constant. The
bandwidth limiting phase delay which is normally introduced by the significant capacitance of the opto-coupler is
thereby greatly reduced. Higher loop bandwidths can be realized since the bandwidth-limiting pole associated
with the opto-coupler is now at a much higher frequency. The PWM comparator polarity is configured such that
with no current into the COMP pin, the controller produces the maximum duty cycle at the main gate driver
outputs, HO and LO.
Feed-Forward Ramp and Volt • Second Clamp
An external resistor (RFF) and capacitor (CFF) connected to VIN, AGND, and the RAMP pin are required to create
the PWM ramp signal. The slope of the signal at RAMP will vary in proportion to the input line voltage. This
varying slope provides line feed-forward information necessary to improve line transient response with voltage
mode control. The RAMP signal is compared to the error signal by the pulse width modulator comparator to
control the duty cycle of the HO and LO outputs. With a constant error signal, the on-time (TON) varies inversely
with the input voltage (VIN) to stabilize the Volt • Second product of the transformer primary signal. The power
path gain of conventional voltage-mode pulse width modulators (oscillator generated ramp) varies directly with
input voltage. The use of a line generated ramp (input voltage feed-forward) nearly eliminates this gain variation.
As a result, the feedback loop is only required to make very small corrections for large changes in input voltage.
14
Submit Documentation Feedback
Product Folder Links: LM5035C
Copyright © 2010–2013, Texas Instruments Incorporated