English
Language : 

ADS8323Y Datasheet, PDF (12/25 Pages) Texas Instruments – 16-Bit, 500kSPS, microPower Sampling ANALOG-TO-DIGITAL CONVERTER
ADS8323
SBAS224C – DECEMBER 2001 – REVISED JANUARY 2010
The analog input is provided to two input pins, +IN
and –IN. When a conversion is initiated, the
differential input on these pins is sampled on the
internal capacitor array. A conversion is initiated on
the ADS8323 by bringing CONVST (pin 21) low for a
minimum of 20ns. CONVST low places the
sample-and-hold amplifier in the hold state and the
conversion process is started. The BUSY output (pin
17) goes high when the conversion begins and stays
high during the conversion. While a conversion is in
progress, both inputs are disconnected from any
internal function. When the conversion result is
latched into the output register, the BUSY signal goes
low. The data can be read from the parallel output
bus following the conversion by bringing both RD and
CS low.
NOTE: This mode of operation is described in more
detail in the Timing and Control section of this data
sheet.
SAMPLE-AND-HOLD SECTION
The sample-and-hold on the ADS8323 allows the
ADC to accurately convert an input sine wave of
full-scale amplitude to 16-bit resolution. The input
bandwidth of the sample-and-hold is greater than the
Nyquist rate (Nyquist equals one-half of the sampling
rate) of the ADC even when the ADC is operated at
its maximum throughput rate of 500kSPS. The typical
small-signal bandwidth of the sample-and-hold
amplifier is 20MHz. The typical aperture delay time,
or the time it takes for the ADS8323 to switch from
the sample to the hold mode following the negative
edge of the CONVST signal, is 10ns. The average
www.ti.com
delta of repeated aperture delay values is typically
30ps (also known as aperture jitter). These
specifications reflect the ability of the ADS8323 to
capture ac input signals accurately at the exact same
moment in time.
REFERENCE
If the internal reference is used, REFOUT (pin 32)
should be directly connected to REFIN (pin 31); see
Figure 15. The ADS8323 can operate, however, with
an external reference in the range of 1.5V to 2.55V
for a corresponding full-scale range of 3.0V to 5.1V.
The internal reference of the ADS8323 is
double-buffered. If the internal reference is used to
drive an external load, a buffer is provided between
the reference and the load applied to REFOUT (pin 32)
(the internal reference can typically source or sink
10μA of current; compensation capacitance should be
at least 0.1μF to minimize noise). If an external
reference is used, the second buffer provides
isolation between the external reference and the
CDAC. This buffer is also used to recharge all of the
capacitors of the CDAC during conversion.
ANALOG INPUT
The analog input is bipolar and fully differential. There
are two general methods of driving the analog input
of the ADS8323: single-ended or differential, as
shown in Figure 16 and Figure 17. When the input is
single-ended, the –IN input is held at the
common-mode voltage. The +IN input swings around
the same common voltage and the peak-to-peak
amplitude is the (common-mode + VREF) and the
(common-mode – VREF). The value of VREF
determines the range over which the common-mode
voltage may vary (see Figure 18).
-VREF to +VREF
peak-to-peak
Common
Voltage
ADS8323
Single-Ended Input
Common
Voltage
VREF
peak-to-peak
VREF
peak-to-peak
Differential Input
ADS8323
Figure 16. Methods of Driving the ADS8323: Single-Ended or Differential
12
Submit Documentation Feedback
Product Folder Link(s): ADS8323
Copyright © 2001–2010, Texas Instruments Incorporated