English
Language : 

PQ60120SMX04 Datasheet, PDF (12/15 Pages) SynQor Worldwide Headquarters – Fixed frequency switching provides predictable EMI
Technical
Specification
PQ60120SMx04
OUTPUT VOLTAGE TRIM (Pin 6): The TRIM input permits the
user to adjust the output voltage across the sense leads up or
down according to the trim range specifications.
To decrease the output voltage, the user should connect a
resistor between Pin 6 and Pin 5 (SENSE(-) input). For a desired
decrease of the nominal output voltage, the value of the resistor
should be
( ) Rtrim-down =
511
∆%
- 10.22
(kΩ)
where
∆% =
Vnominal – Vdesired
Vnominal
x 100%
To increase the output voltage, the user should connect a
resistor between Pin 6 and Pin 7 (SENSE(+) input). For a desired
increase of the nominal output voltage, the value of the resistor
should be
PROTECTION FEATURES
Input Under-Voltage Lockout: The converter is designed
to turn off when the input voltage is too low, helping avoid an
input system instability problem, described in more detail in the
application note titled “0” on our website. The lockout circuitry
is a comparator with dc hysteresis. When the input voltage is
rising, it must exceed the typical Turn-On Voltage Threshold
value (listed on the specifications page) before the converter
will turn on. Once the converter is on, the input voltage must fall
below the typical Turn-Off Voltage Threshold value before the
converter will turn off.
Output Current Limit: If the output current exceeds the
Output Current Limit threshold, the converter turns off. The
converter then enters a ‘hiccup mode’ where it repeatedly
turns on and off at a 5 Hz (nominal) frequency with a 5% duty
cycle until the short circuit condition is removed. This prevents
excessive heating of the converter or the load board.
( ) Rtrim-up = 5.11VOUT x (100+∆%) _ 511 _ 10.22 (kΩ)
1.225∆%
∆%
where Vout = Nominal Output Voltage
Graphs on Page 3 show the relationship between the trim
resistor value and Rtrim-up and Rtrim-down, showing the total
range the output voltage can be trimmed up or down.
Note: the TRIM feature does not affect the voltage at which the
output over-voltage protection circuit is triggered. Trimming the
output voltage too high may cause the over-voltage protection
circuit to engage, particularly during transients.
It is not necessary for the user to add capacitance at the Trim
pin. The node is internally bypassed to eliminate noise.
Output Over-Voltage Limit: If the voltage across the output
pins exceeds the Output Over-Voltage Protection threshold, the
converter will immediately stop switching. This prevents damage
to the load circuit due to 1) excessive series resistance in output
current path from converter output pins to sense point, 2) a
release of a short-circuit condition, or 3) a release of a current
limit condition. Load capacitance determines exactly how high
the output voltage will rise in response to these conditions. After
200 ms the converter will automatically restart.
Over-Temperature Shutdown: A temperature sensor on
the converter senses the average temperature of the module.
The thermal shutdown circuit is designed to turn the converter
off when the temperature at the sensed location reaches the
Over-Temperature Shutdown value. It will allow the converter
to turn on again when the temperature of the sensed location
falls by the amount of the Over-Temperature Shutdown Restart
Hysteresis value.
Total DC Variation of VOUT: For the converter to meet its full
specifications, the maximum variation of the dc value of VOUT,
due to both trimming and remote load voltage drops, should not
be greater than that specified for the output voltage trim range.
Product # PQ60120SMx04
Phone 1-888-567-9596
www.synqor.com
Doc.# 005-0005169 Rev. D
11/13/15
Page 12