English
Language : 

AM29LV6402M Datasheet, PDF (12/57 Pages) SPANSION – 128 Megabit (4 M x 32-Bit/8 M x 16-Bit) MirrorBit 3.0 Volt-only Uniform Sector Flash Memory with Versatile I/O Control
Requirements for Reading Array Data
To read array data from the outputs, the system must
drive the CE# and OE# pins to VIL. CE# is the power
control and selects the device. OE# is the output con-
trol and gates array data to the output pins. WE#
should remain at VIH.
The internal state machine is set for reading array data
upon device power-up, or after a hardware reset. This
ensures that no spurious alteration of the memory
content occurs during the power transition. No com-
mand is necessary in this mode to obtain array data.
Standard microprocessor read cycles that assert valid
addresses on the device address inputs produce valid
data on the device data outputs. The device remains
enabled for read access until the command register
contents are altered.
See “Reading Array Data” for more information. Refer
to the AC Read-Only Operations table for timing speci-
fications and to Figure 14 for the timing diagram. Refer
to the DC Characteristics table for the active current
specification on reading array data.
Page Mode Read
The device is capable of fast page mode read and is
compatible with the page mode Mask ROM read oper-
ation. This mode provides faster read access speed
for random locations within a page. The page size of
the device is 4 doublewords/8 words. The appropriate
page is selected by the higher address bits
A(max)–A2. Address bits A1–A0 in doubleword mode
(A1–A-1 in word mode) determine the specific word
within a page. This is an asynchronous operation; the
microprocessor supplies the specific word location.
The random or initial page access is equal to tACC or
tCE and subsequent page read accesses (as long as
the locations specified by the microprocessor falls
within that page) is equivalent to tPACC. When CE# is
deasserted and reasserted for a subsequent access,
the access time is tACC or tCE. Fast page mode ac-
cesses are obtained by keeping the “read-page ad-
dresses” constant and changing the “intra-read page”
addresses.
Writing Commands/Command Sequences
To write a command or command sequence (which in-
cludes programming data to the device and erasing
sectors of memory), the system must drive WE# and
CE# to VIL, and OE# to VIH.
The device features an Unlock Bypass mode to facili-
tate faster programming. Once the device enters the
Unlock Bypass mode, only two write cycles are re-
quired to program a word or byte, instead of four. The
“Doubleword/Word Program Command Sequence”
section has details on programming data to the device
using both standard and Unlock Bypass command se-
quences.
An erase operation can erase one sector, multiple sec-
tors, or the entire device. Table 2 indicates the address
space that each sector occupies.
Refer to the DC Characteristics table for the active
current specification for the write mode. The AC Char-
acteristics section contains timing specification tables
and timing diagrams for write operations.
Write Buffer
Write Buffer Programming allows the system write to a
maximum of 16 doublewords/32 words in one pro-
gramming operation. This results in faster effective
programming time than the standard programming al-
gorithms. See “Write Buffer” for more information.
Accelerated Program Operation
The device offers accelerated program operations
through the ACC function. This is one of two functions
provided by the WP#/ACC pin. This function is prima-
rily intended to allow faster manufacturing throughput
at the factory.
If the system asserts VHH on this pin, the device auto-
matically enters the aforementioned Unlock Bypass
mode, temporarily unprotects any protected sectors,
and uses the higher voltage on the pin to reduce the
time required for program operations. The system
would use a two-cycle program command sequence
as required by the Unlock Bypass mode. Removing
VHH from the WP#/ACC pin returns the device to nor-
mal operation. Note that the WP#/ACC pin must not be
at VHH for operations other than accelerated program-
ming, or device damage may result. WP# has an inter-
nal pullup; when unconnected, WP# is at VIH.
Autoselect Functions
If the system writes the autoselect command se-
quence, the device enters the autoselect mode. The
system can then read autoselect codes from the inter-
nal register (which is separate from the memory array)
on DQ7–DQ0. Standard read cycle timings apply in
this mode. Refer to the Autoselect Mode and Autose-
lect Command Sequence sections for more informa-
tion.
Standby Mode
When the system is not reading or writing to the de-
vice, it can place the device in the standby mode. In
this mode, current consumption is greatly reduced,
and the outputs are placed in the high impedance
state, independent of the OE# input.
The device enters the CMOS standby mode when the
CE# and RESET# pins are both held at VCC ± 0.3 V.
(Note that this is a more restricted voltage range than
10
Am29LV6402M
January 23, 2006