English
Language : 

AAT2749 Datasheet, PDF (11/17 Pages) Skyworks Solutions Inc. – 3.0MHz Step-Down Converter and Low-V in LDO
DATA SHEET
AAT2749
3.0MHz Step-Down Converter and Low-VIN LDO
CIN(MIN) =
1
VPP
IO
- ESR
· 4 · FS
Always examine the ceramic capacitor DC voltage coef-
ficient characteristics when selecting the proper value.
For example, the capacitance of a 10μF, 6.3V, X5R
ceramic capacitor with 5.0V DC applied is actually about
6μF.
The maximum input capacitor RMS current is:
IRMS = IO ·
VO · 1 - VO
VIN
VIN
The input capacitor RMS ripple current varies with the
input and output voltage and will always be less than or
equal to half of the total DC load current.
VO · 1 - VO = D · (1 - D) = 0.52 = 1
VIN
VIN
2
For VIN = 2 · VO
I = RMS(MAX)
IO
2
VO · 1 - VO
The term VIN
VIN appears in both the input voltage
ripple and input capacitor RMS current equations and is
a maximum when VO is twice VIN. This is why the input
voltage ripple and the input capacitor RMS current ripple
are a maximum at 50% duty cycle.
The input capacitor provides a low impedance loop for
the edges of pulsed current drawn by the AAT2749. Low
ESR/ESL X7R and X5R ceramic capacitors are ideal for
this function. To minimize stray inductance, the capacitor
should be placed as closely as possible to the IC. This
keeps the high frequency content of the input current
localized, minimizing EMI and input voltage ripple. The
proper placement of the input capacitor (C1) can be seen
in the evaluation board layout in the Layout section of
this datasheet.
A laboratory test set-up typically consists of two long
wires running from the bench power supply to the evalu-
ation board input voltage pins. The inductance of these
wires, along with the low-ESR ceramic input capacitor,
can create a high Q network that may affect converter
performance. This problem often becomes apparent in
the form of excessive ringing in the output voltage dur-
ing load transients. Errors in the loop phase and gain
measurements can also result. Since the inductance of a
short PCB trace feeding the input voltage is significantly
lower than the power leads from the bench power sup-
ply, most applications do not exhibit this problem.
In applications where the input power source lead induc-
tance cannot be reduced to a level that does not affect
the converter performance, a high ESR tantalum or alu-
minum electrolytic should be placed in parallel with the
low ESR/ESL bypass ceramic capacitor. This dampens
the high Q network and stabilizes the system.
Step-Down Converter Output Capacitor
The output capacitor limits the output ripple and pro-
vides holdup during large load transitions. A 2.2μF to
4.7μF X5R or X7R ceramic capacitor typically provides
sufficient bulk capacitance to stabilize the output during
large load transitions and has the ESR and ESL charac-
teristics necessary for low output ripple.
The output voltage droop due to a load transient is
dominated by the capacitance of the ceramic output
capacitor. During a step increase in load current, the
ceramic output capacitor alone supplies the load current
until the loop responds. Within two or three switching
cycles, the loop responds and the inductor current
increases to match the load current demand. The rela-
tionship of the output voltage droop during the three
switching cycles to the output capacitance can be esti-
mated by:
COUT
=
3 · ΔILOAD
VDROOP · FS
Once the average inductor current increases to the DC
load level, the output voltage recovers. The above equa-
tion establishes a limit on the minimum value for the
output capacitor with respect to load transients.
I = RMS(MAX)
1
2·
·
3
VOUT · (VIN(MAX) - VOUT)
L · FS · VIN(MAX)
The internal voltage loop compensation also limits the
minimum output capacitor value to 4.7μF. This is due to
its effect on the loop crossover frequency (bandwidth),
phase margin, and gain margin. Increased output capac-
itance will reduce the crossover frequency with greater
phase margin.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
202037A • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • June 8, 2012
11