English
Language : 

SP202E_04 Datasheet, PDF (10/15 Pages) Sipex Corporation – High-Performance RS-232 Line Drivers/Receivers
30A
15A
0A
t=0ns
t=30ns
t➙
Figure 11. ESD Test Waveform for IEC1000-4-2
discharge current rather than the discharge
voltage. Variables with an air discharge such as
approach speed of the object carrying the ESD
potential to the system and humidity will tend to
change the discharge current. For example, the
rise time of the discharge current varies with the
approach speed.
The Contact Discharge Method applies the ESD
current directly to the EUT. This method was
devised to reduce the unpredictability of the
ESD arc. The discharge current rise time is
constant since the energy is directly transferred
without the air-gap arc. In situations such as
hand held systems, the ESD charge can be directly
discharged to the equipment from a person already
holding the equipment. The current is transferred
on to the keypad or the serial port of the equipment
directly and then travels through the PCB and
finally to the IC.
The circuit models in Figures 9 and 10 represent
the typical ESD testing circuit used for all three
methods. The CS is initially charged with the DC
power supply when the first switch (SW1) is on.
Now that the capacitor is charged, the second
switch (SW2) is on while SW1 switches off. The
voltage stored in the capacitor is then applied
through RS, the current limiting resistor, onto the
device under test (DUT). In ESD tests, the SW2
switch is pulsed so that the device under test
receives a duration of voltage.
For the Human Body Model, the current limiting
resistor (RS) and the source capacitor (CS) are
1.5kΩ an 100pF, respectively. For IEC-1000-4-
2, the current limiting resistor (RS) and the source
capacitor
(C )
S
are
330Ω
an
150pF,
respectively.
The higher CS value and lower RS value in the
IEC1000-4-2 model are more stringent than the
Human Body Model. The larger storage capacitor
injects a higher voltage to the test point when
SW2 is switched on. The lower current limiting
resistor increases the current charge onto the test
point.
SP202E
Family
HUMAN BODY
IEC1000-4-2
MODEL
Air Discharge Direct Contact
Driver Outputs
Receiver Inputs
±15kV
±15kV
±15kV
±15kV
±8kV
±8kV
Table 2. Transceiver ESD Tolerance Levels
Level
4
4
Date: 7/19/04
SP202E Series High Performance RS232 Transceivers
10
© Copyright 2004 Sipex Corporation