English
Language : 

SI4730-D50 Datasheet, PDF (21/34 Pages) Silicon Laboratories – BROADCAST AM/FM RADIO RECEIVER
Si4730/31-D50
4.6. Stereo Audio Processing
The output of the FM demodulator is a stereo
multiplexed (MPX) signal. The MPX standard was
developed in 1961, and is used worldwide. Today's
MPX signal format consists of left + right (L+R) audio,
left – right (L–R) audio, a 19 kHz pilot tone, and
RDS/RBDS data as shown in Figure 11 below.
Mono Audio
Left + Right
Stereo
Pilot
Stereo Audio
Left - Right
RDS/
RBDS
4.7. Received Signal Qualifiers
The quality of a tuned signal can vary depending on
many factors including environmental conditions, time of
day, and position of the antenna. To adequately manage
the audio output and avoid unpleasant audible effects to
the end-user, the Si473x monitors and provides
indicators of the signal quality. The Si473x monitors
signal quality metrics including RSSI, SNR, and
multipath interference on FM signals. These metrics are
used to optimize audio and signal processing and are
also reported to the host processor. The signal
processing algorithms can use either Silicon Labs'
optimized settings (recommended) or be customized to
modify performance.
0
15 19 23
38
53 57
Frequency (kHz)
Figure 11. MPX Signal Spectrum
4.6.1. Stereo Decoder
The Si4730/31's integrated stereo decoder
automatically decodes the MPX signal using DSP
techniques. The 0 to 15 kHz (L+R) signal is the mono
output of the FM tuner. Stereo is generated from the
(L+R), (L–R), and a 19 kHz pilot tone. The pilot tone is
used as a reference to recover the (L–R) signal. Output
left and right channels are obtained by adding and
subtracting the (L+R) and (L–R) signals respectively.
The Si4731 uses frequency information from the 19 kHz
stereo pilot to recover the 57 kHz RDS/RBDS signal.
4.6.2. Stereo-Mono Blending
Adaptive noise suppression is employed to gradually
combine the stereo left and right audio channels to a
mono (L+R) audio signal as the signal quality degrades
to maintain optimum sound fidelity under varying
reception conditions. Three metrics, received signal
strength indicator (RSSI), signal-to-noise ratio (SNR),
and multipath interference, are monitored
simultaneously in forcing a blend from stereo to mono.
The metric which reflects the minimum signal quality
takes precedence and the signal is blended
appropriately.
All three metrics have programmable stereo/mono
thresholds and attack/release rates detailed in “AN332:
Si47xx Programming Guide.” If a metric falls below its
mono threshold, the signal is blended from stereo to full
mono. If all metrics are above their respective stereo
thresholds, then no action is taken to blend the signal. If
a metric falls between its mono and stereo thresholds,
then the signal is blended to the level proportional to the
metric’s value between its mono and stereo thresholds,
with an associated attack and release rate.
4.8. De-emphasis
Pre-emphasis and de-emphasis is a technique used by
FM broadcasters to improve the signal-to-noise ratio of
FM receivers by reducing the effects of high-frequency
interference and noise. When the FM signal is
transmitted, a pre-emphasis filter is applied to
accentuate the high audio frequencies. The Si4730/31
incorporates a de-emphasis filter which attenuates high
frequencies to restore a flat frequency response. Two
time constants are used in various regions. The de-
emphasis time constant is programmable to 50 or
75 µs.
4.9. Volume Control
The audio output may be muted. Volume is adjusted
digitally by the RX_VOLUME property.
4.10. Stereo DAC
High-fidelity stereo digital-to-analog converters (DACs)
drive analog audio signals onto the LOUT and ROUT
pins. The audio output may be muted.
4.11. Soft Mute
The soft mute feature is available to attenuate the audio
outputs and minimize audible noise in very weak signal
conditions. The soft mute feature is triggered by the
SNR metric. The SNR threshold for activating soft mute
is programmable, as are soft mute attenuation levels
and attack and release rates.
Rev. 1.0
21