English
Language : 

SI7022-A20 Datasheet, PDF (13/25 Pages) Silicon Laboratories – HUMIDITY/TEMPERATURE SENSOR WITH PWM OUTPUT
Si7022-A20
4.2. Hysteresis
The moisture absorbent film (polymeric dielectric) of the humidity sensor will carry a memory of its exposure
history, particularly its recent or extreme exposure history. A sensor exposed to relatively low humidity will carry a
negative offset relative to the factory calibration, and a sensor exposed to relatively high humidity will carry a
positive offset relative to the factory calibration. This factor causes a hysteresis effect illustrated by the solid trace
in Figure 6. The hysteresis value is the difference in %RH between the maximum absolute error on the decreasing
humidity ramp and the maximum absolute error on the increasing humidity ramp at a single relative humidity
setpoint and is expressed as a bipolar quantity relative to the average error (dashed trace). In the example of
Figure 6, the measurement uncertainty due to the hysteresis effect is ±1.0%RH.
4.3. Prolonged Exposure to High Humidity
Prolonged exposure to high humidity will result in a gradual upward drift of the RH reading. The shift in sensor
reading resulting from this drift will generally disappear slowly under normal ambient conditions. The amount of
shift is proportional to the magnitude of relative humidity and the length of exposure. In the case of lengthy
exposure to high humidity, some of the resulting shift may persist indefinitely under typical conditions. It is generally
possible to substantially reverse this effect by baking the device (see Section “4.6. Bake/Hydrate Procedure” ).
4.4. PCB Assembly
4.4.1. Soldering
Like most ICs, Si7022 devices are shipped from the factory vacuum-packed with an enclosed desiccant to avoid
any RH accuracy drift during storage and to prevent any moisture-related issues during solder reflow. The following
guidelines should be observed during PCB assembly:
Si7022 devices are compatible with standard board assembly processes. Devices should be soldered
using reflow per the recommended card reflow profile. See Section “9. PCB Land Pattern and Solder Mask
Design” for the recommended card reflow profile.
A "no clean" solder process is recommended to minimize the need for water or solvent rinses after
soldering. Cleaning after soldering is possible, but must be done carefully to avoid impacting the
performance of the sensor. See “AN607: Si70xx Humidity Sensor Designer’s Guide” for more information
on cleaning.
It is essential that the exposed polymer sensing film be kept clean and undamaged. This can be
accomplished by careful handling and a clean, well-controlled assembly process. When in doubt or for
extra protection, a heat-resistant, protective cover such as Kapton™ KPPD-1/8 polyimide tape can be
installed during PCB assembly.
Si7022s may be ordered with a factory-fitted, solder-resistant protective cover. This cover provides protection
during PCB assembly or rework but without the time and effort required to install and remove the Kapton tape. It
can be left in place for the lifetime of the product, preventing liquids, dust or other contaminants from coming into
contact with the polymer sensor film. See Section “7. Ordering Guide” for a list of ordering part numbers that
include the cover.
Rev. 1.1
13