English
Language : 

S1131 Datasheet, PDF (8/30 Pages) Seiko Instruments Inc – HIGH RIPPLE-REJECTION AND LOW DROPOUT
HIGH RIPPLE-REJECTION LOW DROPOUT MIDDLE OUTPUT CURRENT CMOS VOLTAGE REGULATOR
S-1131 Series
Rev.4.1_00
„ Electrical Characteristics
Table 6
Item
Symbol
Conditions
Output voltage*1
Output current*2
VOUT(E)1
VOUT(E)2
IOUT
Dropout voltage*3
Vdrop
Line regulation
ΔVOUT1
ΔVIN• VOUT
Load regulation
Output voltage
temperature coefficient*4
Current consumption
during operation
Input voltage
Ripple rejection
ΔVOUT2
ΔVOUT
ΔTa• VOUT
ISS1
VIN
RR
Short-circuit current
Ishort
Current consumption
during power-off
ISS2
ON/OFF pin
input voltage “H”
VSH
ON/OFF pin
input voltage “L”
VSL
ON/OFF pin
input current “H”
ISH
ON/OFF pin
input current “L”
ISL
VIN = VOUT(S) + 1.0 V, IOUT = 30 mA
VIN = VOUT(S) + 1.0 V, IOUT = 80 mA
VIN ≥ VOUT(S) + 1.0 V
VOUT(S) = 1.5 V
VOUT(S) = 1.6 V
VOUT(S) = 1.7 V
VOUT(S) = 1.8 V
IOUT = 100 mA
VOUT(S) = 1.9 V
VOUT(S) = 2.0 V
VOUT(S) = 2.1 V
2.2 V ≤ VOUT(S) ≤ 2.5 V
2.6 V ≤ VOUT(S) ≤ 3.3 V
3.4 V ≤ VOUT(S) ≤ 5.5 V
VOUT(S) + 0.5 V ≤ VIN ≤ 6.5 V,
IOUT = 80 mA
VIN = VOUT(S) + 1.0 V,
1.0 mA ≤ IOUT ≤ 80 mA
VIN = VOUT(S) + 1.0 V, IOUT = 10 mA,
−40°C ≤ Ta ≤ 85°C
VIN = VOUT(S) + 1.0 V, ON/OFF pin = ON,
no load
⎯
VIN = VOUT(S) + 1.0 V, f = 1.0 kHz,
ΔVrip = 0.5 Vrms, IOUT = 80 mA
VIN = VOUT(S) + 1.0 V, ON/OFF pin = ON,
VOUT = 0 V
VIN = VOUT(S) + 1.0 V, ON/OFF pin = OFF,
no load
VIN = VOUT(S) + 1.0 V, RL = 1.0 kΩ
VIN = VOUT(S) + 1.0 V, RL = 1.0 kΩ
VIN = 6.5 V, VON/OFF = 6.5 V
VIN = 6.5 V, VON/OFF = 0 V
(Ta = 25°C unless otherwise specified)
Min.
Typ.
Max.
Unit
Test
Circuit
VOUT(S)
× 0.99
VOUT(S)
VOUT(S)
× 1.01
V
1
VOUT(S)
× 0.98
VOUT(S)
VOUT(S)
× 1.02
V
1
300*5
⎯
⎯ mA 3
⎯
1.00 1.05 V 1
⎯
0.90 0.95 V 1
⎯
0.80 0.85 V 1
⎯
0.70 0.75 V 1
⎯
0.60 0.65 V 1
⎯
0.50 0.60 V 1
⎯
0.40 0.55 V 1
⎯
0.30 0.49 V 1
⎯
0.25 0.34 V 1
⎯
0.20 0.28 V 1
⎯
0.05 0.2 %/V 1
⎯
20
40 mV 1
⎯
±100
⎯
ppm
/°C
1
⎯
35
65 μA 2
2.0
⎯
6.5 V ⎯
⎯
70
⎯ dB 5
⎯
450
⎯ mA 3
⎯
0.1
1.0 μA 2
1.5
⎯
⎯
V4
⎯
⎯
0.3 V 4
−0.1
⎯
0.1 μA 4
−0.1
⎯
0.1 μA 4
*1. VOUT(S): Set output voltage
VOUT(E)1: Actual output voltage
Output voltage when fixing IOUT(= 30 mA) and inputting VOUT(S) + 1.0 V
VOUT(E)2: Actual output voltage
Output voltage when fixing IOUT(= 80 mA) and inputting VOUT(S) + 1.0 V
*2. The output current at which the output voltage becomes 95% of VOUT(E)1 after gradually increasing the output current.
*3. Vdrop = VIN1 − (VOUT3 × 0.98)
VOUT3 is the output voltage when VIN = VOUT(S) + 1.0 V and IOUT = 100 mA.
VIN1 is the input voltage at which the output voltage becomes 98% of VOUT3 after gradually decreasing the input voltage.
*4. A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.
ΔVOUT
ΔTa
[mV/°C]*1 = VOUT(S) [V]*2 ×
ΔVOUT
ΔTa • VOUT
[ppm/°C]*3 ÷ 1000
*1. Change in temperature of the output voltage
*2. Set output voltage
*3. Output voltage temperature coefficient
*5. The output current can be at least this value.
Due to restrictions on the package power dissipation, this value may not be satisfied. Attention should be paid to the power
dissipation of the package when the output current is large.
This specification is guaranteed by design.
8
Seiko Instruments Inc.