English
Language : 

S-1167 Datasheet, PDF (8/31 Pages) Seiko Instruments Inc – ULTRA LOW CURRENT CONSUMPTION, HIGH RIPPLE REJECTION AND LOW DROPOUT CMOS VOLTAGE REGULATOR
ULTRA LOW CURRENT CONSUMPTION, HIGH RIPPLE REJECTION AND LOW DROPOUT CMOS VOLTAGE REGULATOR
S-1167 Series
Rev.2.3_00
„ Electrical Characteristics
Item
Output voltage *1
Output current *2
Dropout voltage *3
Symbol
VOUT(E)
IOUT
Vdrop
Line regulation
Load regulation
Output voltage
temperature coefficient *4
Current consumption
during operation
Current consumption
during shutdown
Input voltage
ON / OFF pin
input voltage “H”
ON / OFF pin
input voltage “L”
ON / OFF pin
input current “H”
ON / OFF pin
input current “L”
∆VOUT1
∆VIN • VOUT
∆VOUT2
∆VOUT
∆Ta • VOUT
ISS1
ISS2
VIN
VSH
VSL
ISH
ISL
Table 6
(Ta = 25°C unless otherwise specified)
Condition
Min.
Typ.
Max.
Unit
Test
Circuit
VIN = VOUT(S) + 1.0 V, IOUT = 30mA
VIN ≥ VOUT(S) + 1.0 V
VOUT(S) VOUT(S) VOUT(S)
× 0.99
× 1.01
V
1
150 *5
−
−
mA
3
IOUT = 100 mA
1.5 V ≤ VOUT(S) ≤ 1.9 V 0.5 0.54 0.58
V
1
2.0 V ≤ VOUT(S) ≤ 2.4 V
−
0.23 0.35
V
1
2.5 V ≤ VOUT(S) ≤ 2.9 V
−
0.20 0.30
V
1
3.0 V ≤ VOUT(S) ≤ 3.2 V
−
0.15 0.23
V
1
3.3 V ≤ VOUT(S) ≤ 5.5 V
−
0.14 0.21
V
1
VOUT(S) + 0.5 V ≤ VIN ≤ 6.5 V, IOUT = 30 mA
−
0.05 0.2 % / V 1
VIN = VOUT(S) + 1.0 V, 10 µA ≤ IOUT ≤ 100 mA
VIN = VOUT(S) + 1.0 V, IOUT = 30 mA,
−40 ≤ Ta ≤ 85 °C
VIN = VOUT(S) + 1.0 V, ON / OFF pin = ON,
No load
VIN=VOUT(S) + 1.0 V, ON / OFF pin = OFF,
No load
−
VIN = VOUT(S) + 1.0 V, RL = 1.0 kΩ
−
20
40
mV
1
− ±100 − ppm / °C 1
−
9
16
µA
2
−
0.1 0.9
µA
2
2.0
−
6.5
V
−
1.5
−
−
V
4
VIN = VOUT(S) + 1.0 V, RL = 1.0 kΩ
−
−
0.3
V
4
VIN = 6.5 V, VON / OFF = 6.5 V
−0.1
−
0.1
µA
4
VIN = 6.5 V, VON / OFF = 0 V
−0.1
−
0.1
µA
4
Ripple rejection
RR
VIN = VOUT(S) + 1.0 V,
f = 1.0 kHz,
1.5 V ≤ VOUT(S) ≤ 3.0 V
−
70
−
dB
5
∆Vrip = 0.5 Vrms,
IOUT = 30 mA
3.1 V ≤ VOUT(S) ≤ 5.5 V
−
65
−
dB
5
Short-circuit current
ISHORT
VIN = VOUT(S) + 1.0 V, ON / OFF pin = ON,
VOUT = 0 V
−
300
−
mA
3
*1. VOUT(S) : Specified output voltage
VOUT(E) : Actual output voltage at the fixed load
The output voltage when fixing IOUT( = 30 mA) and inputting VOUT(S) + 1.0 V
*2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output current.
*3. Vdrop = VIN1 − (VOUT3 × 0.98)
VOUT3 is the output voltage when VIN = VOUT(S) + 1.0 V and IOUT = 100 mA.
VIN1 is the input voltage at which the output voltage becomes 98% of VOUT3 after gradually decreasing the input
voltage.
*4. The change in temperature [mV / °C] is calculated using the following equation.
[ ] [ ] [ ] ∆VOUT mV / °C *1 = VOUT(S) V *2 × ∆VOUT ppm / °C *3 ÷1000
∆Ta
∆Ta • VOUT
*1. The temperature change ratio of the output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
*5. The output current can be supplied at least to this value.
Due to restrictions on the package power dissipation, this value may not be satisfied.
power dissipation of the package when the output current is large.
This specification is guaranteed by design.
Attention should be paid to the
8
Seiko Instruments Inc.