English
Language : 

S1206 Datasheet, PDF (7/35 Pages) Seiko Instruments Inc – ULTRA LOW CURRENT CONSUMPTION AND
ULTRA LOW CURRENT CONSUMPTION AND LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.3.2_00
S-1206 Series
 Electrical Characteristics
Table 6
(Ta = 25°C unless otherwise specified)
Item
Symbol
Conditions
Min.
Typ.
Max.
Unit
Test
Circuit
Output voltage*1
VOUT(E)
VIN = VOUT(S) + 1.0 V, IOUT = 30 mA,
1.2 V ≤ VOUT(S) < 1.5 V
VIN = VOUT(S) + 1.0 V, IOUT = 30 mA,
1.5 V ≤ VOUT(S)
VOUT(S)
−15 mV
VOUT(S)
VOUT(S)
+15 mV
V
1
VOUT(S)
× 0.99
VOUT(S)
VOUT(S)
× 1.01
V
1
Output current*2
IOUT
VIN ≥ VOUT(S) + 1.0 V, 1.2 V ≤ VOUT(S) < 1.5 V 150*5
−
VIN ≥ VOUT(S) + 1.0 V, 1.5 V ≤ VOUT(S)
250*5
−
−
mA
3
−
mA
3
1.2 V ≤ VOUT(S) < 1.3 V 0.5
0.54
0.81
V
1
1.3 V ≤ VOUT(S) < 1.4 V
−
0.50
0.73
V
1
1.4 V ≤ VOUT(S) < 1.5 V
−
0.43
0.66
V
1
Dropout voltage*3 Vdrop
IOUT = 100 mA
1.5 V ≤ VOUT(S) < 1.7 V
−
1.7 V ≤ VOUT(S) < 1.9 V
−
0.35
0.53
0.33
0.50
V
V
1
1
1.9 V ≤ VOUT(S) < 2.1 V
−
0.26
0.43
V
1
2.1 V ≤ VOUT(S) < 3.0 V
−
0.23
0.36
V
1
3.0 V ≤ VOUT(S) ≤ 5.2 V
−
0.15
0.23
V
1
Line regulation
ΔVOUT1
VOUT(S) + 0.5 V ≤ VIN ≤ 6.5 V IOUT = 1 μA
ΔVIN • VOUT
IOUT = 30 mA
−
0.05
0.2
%/V
1
−
0.05
0.2
%/V
1
Load regulation
ΔVOUT2
VIN = VOUT(S) + 1.0 V, 1 μA ≤ IOUT ≤ 100 mA
−
Output voltage
temperature
coefficient*4
ΔVOUT
VIN = VOUT(S) + 1.0 V, IOUT = 30 mA,
ΔTa • VOUT −40°C ≤ Ta ≤ 85°C
−
20
40
mV
1
±120
−
ppm/°C
1
Current consumption
during operation
ISS1
VIN = VOUT(S) + 1.0 V, no load
−
1.0
1.5
μA
2
Input voltage
VIN
Short-circuit current ISHORT
−
1.7
−
6.5
V
−
VIN = VOUT(S) + 1.0 V, 1.2 V ≤ VOUT < 2.3 V
−
130
−
mA
3
VOUT = 0 V
2.3 V ≤ VOUT ≤ 5.2 V
−
100
−
mA
3
*1. VOUT(S) : Set output voltage
VOUT(E) : Actual output voltage
Output voltage when fixing IOUT (= 30 mA) and inputting VOUT(S) + 1.0 V
*2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output current.
*3. Vdrop = VIN1 − (VOUT3 × 0.98)
VOUT3 is the output voltage when VIN = VOUT(S) + 1.0 V and IOUT = 100 mA.
VIN1 is the input voltage at which the output voltage becomes 98% of VOUT3 after gradually decreasing the input
voltage.
*4. A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.
ΔVOUT
ΔTa
[mV/°C]*1 = VOUT(S) [V]*2 ×
ΔVOUT
ΔTa • VOUT
[ppm/°C]*3 ÷ 1000
*1. Change in temperature of output voltage
*2. Set output voltage
*3. Output voltage temperature coefficient
*5. The output current can be at least this value.
Due to restrictions on the package power dissipation, this value may not be satisfied. Attention should be paid to the
power dissipation of the package when the output current is large.
This specification is guaranteed by design.
Seiko Instruments Inc.
7