English
Language : 

BD6971FV Datasheet, PDF (4/5 Pages) Rohm – Silicon Monolithic Integrated Circuit
4/4
〇CAUTIONS ON USE
1) Absolute maximum ratings
An excess in the absolute maximum rations, such as supply voltage, temperature range of operating conditions, etc., can break down
the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will
expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.
2) Connecting the power supply connector backward
Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply lines. An
external direction diode can be added.
3) Power supply line
Back electromotive force causes regenerated current to power supply line, therefore take a measure such as placing a capacitor
between power supply and GND for routing regenerated current. And fully ensure that the capacitor characteristics have no problem
before determine a capacitor value. (when applying electrolytic capacitors, capacitance characteristic values are reduced at low
temperatures)
4) GND potential
It is possible that the motor output terminal may deflect below GND terminal because of influence by back electromotive force of motor.
The potential of GND terminal must be minimum potential in all operating conditions, except that the levels of the motor outputs
terminals are under GND level by the back electromotive force of the motor coil. Also ensure that all terminals except GND and motor
output terminals do not fall below GND voltage including transient characteristics. Malfunction may possibly occur depending on use
condition, environment, and property of individual motor. Please make fully confirmation that no problem is found on operation of IC.
5) Thermal design
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.
6) Inter-pin shorts and mounting errors
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or
if pins are shorted together.
7) Actions in strong electromagnetic field
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.
8) ASO
When using the IC, set the output transistor so that it does not exceed absolute maximum rations or ASO.
9) Thermal shut down circuit
The IC incorporates a built-in thermal shutdown circuit (TSD circuit). Operation temperature is 175°C (typ.) and has a hysteresis width
of 25°C (typ.). When IC chip temperature rises and TSD circuit works, the output terminal becomes an open state. TSD circuit is
designed only to shut the IC off to prevent thermal runaway. It is not designed to protect the IC or guarantee its operation. Do not
continue to use the IC after operation this circuit or use the IC in an environment where the operation of this circuit is assumed.
10) Testing on application boards
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always
discharge capacitors after each process or step. Always turn the IC’s power supply off before connecting it to or removing it from a jig
or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when
transporting or storing the IC.
11) GND wiring pattern
When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single
ground point at the ground potential of application so that the pattern wiring resistance and voltage variations caused by large currents
do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external
components, either.
12) Capacitor between output and GND
When a large capacitor is connected between output and GND, if Vcc is shorted with 0V or GND for some cause, it is possible that the
current charged in the capacitor may flow into the output resulting in destruction. Keep the capacitor between output and GND below
100uF.
13) IC terminal input
When Vcc voltage is not applied to IC, do not apply voltage to each input terminal. When voltage above Vcc or below GND is applied
to the input terminal, parasitic element is actuated due to the structure of IC. Operation of parasitic element causes mutual
interference between circuits, resulting in malfunction as well as destruction in the last. Do not use in a manner where parasitic
element is actuated.
REV. A