English
Language : 

RT8260A Datasheet, PDF (9/12 Pages) Richtek Technology Corporation – 1.8A, 24V, 1.4MHz Step-Down Converter
RT8260A
Table 3. Suggested Diode
Component
Supplier
Series
VRRM
(V)
IOUT
(A)
Package
DIODES B220A 20
2
SMA
DIODES B230A 30
2
SMA
PANJIT SK22 20
2 DO-214AA
PANJIT SK23 30
2 DO-214AA
CIN and COUT Selection
The input capacitance, CIN, is needed to filter the trapezoidal
current at the source of the top MOSFET. To prevent large
ripple current, a low ESR input capacitor sized for the
maximum RMS current should be used. The RMS current
is given by :
IRMS
=
IOUT(MAX)
VOUT
VIN
VIN − 1
VOUT
This formula has a maximum at VIN = 2VOUT, where
IRMS = IOUT/2. This simple worst-case condition is commonly
used for design because even significant deviations do not
offer much relief.
Choose a capacitor rated at a higher temperature than
required. Several capacitors may also be paralleled to meet
size or height requirements in the design.
The selection of COUT is determined by the required Effective
Series Resistance (ESR) to minimize voltage ripple.
Moreover, the amount of bulk capacitance is also a key for
COUT selection to ensure that the control loop is stable.
Loop stability can be checked by viewing the load transient
response as described in a later section.
The output ripple, ΔVOUT , is determined by :
ΔVOUT
≤
ΔIL
⎡⎢⎣ESR +
1
8fCOUT
⎤
⎥⎦
The output ripple will be highest at the maximum input
voltage since ΔIL increases with input voltage. Multiple
capacitors placed in parallel may be needed to meet the
ESR and RMS current handling requirement. Dry tantalum,
special polymer, aluminum electrolytic and ceramic
capacitors are all available in surface mount packages.
Special polymer capacitors offer very low ESR value.
However, it provides lower capacitance density than other
types. Although Tantalum capacitors have the highest
capacitance density, it is important to only use types that
pass the surge test for use in switching power supplies.
Aluminum electrolytic capacitors have significantly higher
ESR. However, it can be used in cost-sensitive applications
for ripple current rating and long term reliability
considerations. Ceramic capacitors have excellent low ESR
characteristics but can have a high voltage coefficient and
audible piezoelectric effects. The high Q of ceramic
capacitors with trace inductance can also lead to significant
ringing.
Higher values, lower cost ceramic capacitors are now
becoming available in smaller case sizes. Their high ripple
current, high voltage rating and low ESR make them ideal
for switching regulator applications. However, care must
be taken when these capacitors are used at input and
output. When a ceramic capacitor is used at the input and
the power is supplied by a wall adapter through long wires,
a load step at the output can induce ringing at the input,
VIN. At best, this ringing can couple to the output and be
mistaken as loop instability. At worst, a sudden inrush of
current through the long wires can potentially cause a
voltage spike at VIN large enough to damage the part.
Checking Transient Response
The regulator loop response can be checked by looking at
the load transient response. Switching regulators take
several cycles to respond to a step in load current. When
a load step occurs, VOUT immediately shifts by an amount
equal to ΔILOAD (ESR) also begins to charge or discharge
COUT generating a feedback error signal for the regulator to
return VOUT to its steady-state value. During this recovery
time, VOUT can be monitored for overshoot or ringing that
would indicate a stability problem.
EMI Consideration
Since parasitic inductance and capacitance effects in PCB
circuitry would cause a spike voltage on the SW pin when
the high side MOSFET is turned-on/off, this spike voltage
on SW may impact EMI performance in the system. In
order to enhance EMI performance, there are two methods
to suppress the spike voltage. One is to place an R-C
snubber between SW and GND and place them as close
as possible to the SW pin (see Figure 3). Another method
is to add a resistor in series with the bootstrap capacitor,
CBOOT. But this method will decrease the driving capability
to the high side MOSFET. It is strongly recommended to
DS8260A-03 March 2011
www.richtek.com
9