English
Language : 

74HCT14 Datasheet, PDF (17/23 Pages) NXP Semiconductors – Hex inverting Schmitt trigger
Philips Semiconductors
Hex inverting Schmitt trigger
Product specification
74HC14; 74HCT14
APPLICATION INFORMATION
The slow input rise and fall times cause additional power
dissipation. This can be calculated using the following
formula:
Pad = fi × (tr × ICC(AV) + tf × ICC(AV)) × VCC.
Where:
Pad = additional power dissipation (µW);
fi = input frequency (MHz);
tr = input rise time (µs); 10% to 90%;
tf = input fall time (µs); 10% to 90%;
ICC(AV) = average additional supply current (µA).
ICC(AV) differs with positive or negative input transitions, as
shown in Figs 16 and 17.
For 74HC/HCT14 used in a relaxation oscillator circuit,
see Fig.18.
Note to application information
All values given are typical unless otherwise specified.
400
handbook, halfpage
ICC(AV)
(µA)
300
MNA852
200
100
0
0
positive - going
edge
negative - going
edge
2
4 VCC (V) 6
Linear change of VI between 0.1VCC to 0.9VCC
Fig.16 Average ICC for 74HC14 Schmitt trigger
devices.
400
handbook, halfpage
ICC(AV)
(µA)
300
200
100
MNA853
positive - going
egddge
negative - going
egddge
0
0
2
4 VCC (V) 6
Linear change of VI between 0.1VCC to 0.9VCC.
Fig.17 Average ICC for HCT Schmitt trigger
devices.
2003 Oct 30
handbook, halfpage
R
C
MNA854
74HC14 : f = T-1-- ≈ 0----.-8---1---R----C---
74HCT14 : f = T-1-- ≈ 0----.-6----7-1----R-----C--
Fig.18 Relaxation oscillator using 74HC/HCT14.
17