English
Language : 

MC33078_11 Datasheet, PDF (8/14 Pages) ON Semiconductor – Low Noise Dual/Quad Operational Amplifiers
MC33078, MC33079, NCV33078, NCV33079
10
VCC = +15 V
VEE = -15 V
DVin = 20 V
8.0
6.0
Falling
Rising
-
4.0
DVin
+
VO
2.0
kW
2.0
-55
-25 0
25 50
75
100 125
TA, AMBIENT TEMPERATURE (°C)
Figure 24. Slew Rate versus Temperature
120
0
VCC = +15 V
100
VEE = -15 V
RL = 2.0 kW
TA = 25°C
45
80
60
Phase
90
Gain
40
135
20
0
180
1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M
f, FREQUENCY (Hz)
Figure 25. Voltage Gain and Phase
versus Frequency
14
0
-
12 Vin +
VO
10
10
2.0 kW
CL 25°C
Phase
-55°C
20
8.0
30
6.0
125°C 125°C
40
4.0
VCC = +15 V
2.0 VEE = -15 V
VO = 0 V
0
25°C -55°C
Gain
1
10
100
CL, OUTPUT LOAD CAPACITANCE (pF)
50
60
70
1000
Figure 26. Open Loop Gain Margin and
Phase Margin versus Load Capacitance
100
80
60
40
20
0
10
-
DVin
+
VO
CL
125°C
25°C
- 55°C
VCC = +15 V
VEE = -15 V
DVin = 100 mV
100
1.0 k
10 k
CL, OUTPUT LOAD CAPACITANCE (pF)
Figure 27. Overshoot versus Output
Load Capacitance
100
10
80
50
VCC = +15 V
VEE = -15 V
30
TA = 25°C
20
10
8.0
5.0
Voltage
3.0
2.0
Current
1.0
10
100
1.0 k
10 k
f, FREQUENCY (Hz)
0.1
100 k
Figure 28. Input Referred Noise Voltage and
Current versus Frequency
1000
VCC = +15 V
VEE = -15 V
f = 1.0 kHz
100
TA = 25°C
Vn(total) =
Ǹ(inRs)2 
) 
en2 
) 
4KTRS
10
1.0
10
100
1.0 k
10 k
100 k 1.0 M
RS, SOURCE RESISTANCE (W)
Figure 29. Total Input Referred Noise Voltage
versus Source Resistance
http://onsemi.com
8