English
Language : 

NCP1271P100G Datasheet, PDF (16/21 Pages) ON Semiconductor – Soft-Skip Mode Standby PWM Controller with Adjustable Skip Level and External Latch
NCP1271
Recover from Standby
In the event that a large load is encountered during skip
cycle operation, the circuit automatically disables the
normal Soft−Skip procedure and delivers maximum power
to the load (Figure 37). This feature, the Transient Load
Detector (TLD), is initiated anytime a skip event is exited
and the FB pin is greater than 2.85 V, as would be the case
for a sudden increase in output load.
output voltage
300 ms max
load current
VFB
V TLD
Maximum current available
when TLD level is hit
Vskip
ID
Figure 37. Transient Response from Standby
External Latchoff Shutdown
When the Skip/Latch input (Pin 1) is pulled higher than
Vlatch (8.0 V typical), the drive output is latched off until
VCC drops below VCC(reset) (4.0 Vtypical). If Vbulk stays
above approximately 30 Vdc, then the HV FET ensure that
VCC remains above VCC(latch) (5.8 Vtypical). Therefore, the
controller is reset by unplugging the power supply from the
wall and allowing Vbulk to discharge. Figure 38 illustrates
the timing diagram of VCC in the latchoff condition.
Startup current source is
charging the VCC capacitor
12.6 V
Startup current source is
off when VCC is 12.6 V
5.8 V
Startup current source turns
on when VCC reaches 5.8 VCC
Figure 38. Latchoff VCC Timing Diagram
Figure 39 defines the different voltage regions of the
Skip/latch Pin (Pin 1) operation.
1. When the voltage is above Vlatch (7.1 V min,
8.7 V max), the circuit is in latchoff and all drive
pulses are disabled until VCC cycles below 4.0 V
(typical).
2. When the voltage is between Vskip−reset (5.0 V
min, 6.5 V max) and Vlatch, the pin is considered
to be opened. The skip level Vskip is restored to
the default 1.2 V.
3. When the voltage is between about 3.0 V and
Vskip−reset, the Vskip level is above the normal
operating range of the feedback pin. Therefore,
the output does not switch.
4. When the voltage is between 0 V and 3.0 V, the
Vskip is within the operating range of the
feedback pin. Then the voltage on this pin sets
the skip level as explained earlier.
V pin1
10 V (max limit)
Output is latched off here.
8V (Vlatch)
Pin 1 considered to be opened.
Vskip is reset to default level 1.2 V.
5.7 V (Vskip−reset )
Output always low (skipped) here.
3.0 V (always skip)
Adjustable Vskip range.
0 V (no skip)
Figure 39. NCP1271 Pin 1 Operating Regions
The external latch feature allows the circuit designers to
implement different kinds of latching protection. The
NCP1271 applications note (AND8242/D) details several
simple circuits to implement overtemperature protection
(OTP) and overvoltage protection (OVP).
In order to prevent unexpected latchoff due to noise,
it is very important to put a noise decoupling capacitor
near Pin 1 to increase the noise immunity. It is also
recommended to always have a resistor from pin 1 to GND.
This further reduces the risk of premature latchoff. Also
note that if the additional latch−off circuitry has leakage,
it will modify the skip adjust setup.
External Non−Latched Shutdown
Figure 40 illustrates the Feedback (pin 2) operation. An
external non−latched shutdown can be easily implemented
by simply pulling FB below the skip level. This is an
inherent feature from the standby skip operation. Hence, it
allows the designer to implement additional non−latched
shutdown protection.
The device can also be shutdown by pulling the VCC pin
to GND (<190 mV). In addition to shutting off the output,
this method also places the part into a low current
consumption state.
http://onsemi.com
16