English
Language : 

THS4502 Datasheet, PDF (31/49 Pages) Texas Instruments – WIDEBAND, LOW-DISTORTION FULLY DIFFERENTIAL AMPLIFIERS
www.ti.com
effect circuit operation. Keep resistor values as
low as possible, consistent with load driving
considerations.
• Connections to other wideband devices on the
board may be made with short direct traces or
through onboard transmission lines. For short
connections, consider the trace and the input to
the next device as a lumped capacitive load.
Relatively wide traces (50 mils to 100 mils) should
be used, preferably with ground and power planes
opened up around them. Estimate the total
capacitive load and determine if isolation resistors
on the outputs are necessary. Low parasitic
capacitive loads (< 4 pF) may not need an RS
since the THS4500 family is nominally
compensated to operate with a 2-pF parasitic
load. Higher parasitic capacitive loads without an
RS are allowed as the signal gain increases
(increasing the unloaded phase margin). If a long
trace is required, and the 6-dB signal loss intrinsic
to a doubly-terminated transmission line is
acceptable, implement a matched impedance
transmission line using microstrip or stripline
techniques (consult an ECL design handbook for
microstrip and stripline layout techniques).
• A 50-Ω environment is normally not necessary
onboard, and in fact, a higher impedance
environment improves distortion as shown in the
distortion versus load plots. With a characteristic
board trace impedance defined based on board
material and trace dimensions, a matching series
resistor into the trace from the output of the
THS4500 family is used as well as a terminating
shunt resistor at the input of the destination
device.
• Remember also that the terminating impedance is
the parallel combination of the shunt resistor and
the input impedance of the destination device: this
total effective impedance should be set to match
the trace impedance. If the 6-dB attenuation of a
doubly terminated transmission line is
unacceptable, a long trace can be
series-terminated at the source end only. Treat
the trace as a capacitive load in this case. This
does not preserve signal integrity as well as a
doubly-terminated line. If the input impedance of
the destination device is low, there is some signal
attenuation due to the voltage divider formed by
the series output into the terminating impedance.
• Socketing a high speed part like the THS4500
family is not recommended. The additional lead
length and pin-to-pin capacitance introduced by
the socket can create an extremely troublesome
parasitic network which can make it almost
impossible to achieve a smooth, stable frequency
response. Best results are obtained by soldering
the THS4500 family parts directly onto the board.
THS4502
THS4503
SLOS352E – APRIL 2002 – REVISED OCTOBER 2011
PowerPAD DESIGN CONSIDERATIONS
The THS4500 family is available in a
thermally-enhanced PowerPAD family of packages.
These packages are constructed using a downset
leadframe upon which the die is mounted [see
Figure 112(a) and Figure 112(b)]. This arrangement
results in the lead frame being exposed as a thermal
pad on the underside of the package [see
Figure 112(c)]. Because this thermal pad has direct
thermal contact with the die, excellent thermal
performance can be achieved by providing a good
thermal path away from the thermal pad.
The PowerPAD package allows for both assembly
and thermal management in one manufacturing
operation. During the surface-mount solder operation
(when the leads are being soldered), the thermal pad
can also be soldered to a copper area underneath the
package. Through the use of thermal paths within this
copper area, heat can be conducted away from the
package into either a ground plane or other heat
dissipating device.
The PowerPAD package represents a breakthrough
in combining the small area and ease of assembly of
surface mount with the, heretofore, awkward
mechanical methods of heatsinking.
DIE
Side View (a)
DIE
Thermal
Pad
End View (b)
Bottom View (c)
Figure 112. Views of Thermally
Enhanced Package
Although there are many ways to properly heatsink
the PowerPAD package, the following steps illustrate
the recommended approach.
Pin 1
0.205
0.060
0.013
0.017
0.030
0.075
0.025 0.094
0.010
vias
0.035
0.040
Top View
Figure 113. PowerPAD PCB Etch and Via Pattern
Copyright © 2002–2011, Texas Instruments Incorporated
Product Folder Link(s): THS4502 THS4503
Submit Documentation Feedback
31