English
Language : 

LMH6642 Datasheet, PDF (19/33 Pages) National Semiconductor (TI) – 3V, Low Power, 130MHz, 75mA Rail-to-Rail Output Amplifiers
LMH6642, LMH6643, LMH6644
www.ti.com
SNOS966P – MAY 2001 – REVISED MARCH 2013
No matter how low an Rf is selected, there is a need for Cf in order to stabilize the circuit. The reason for this is
that the Op Amp input capacitance and Q1 equivalent collector capacitance together (CIN) will cause additional
phase shift to the signal fed back to the inverting node. Cf will function as a zero in the feedback path counter-
acting the effect of the CIN and acting to stabilized the circuit. By proper selection of Cf such that the Op Amp
open loop gain is equal to the inverse of the feedback factor at that frequency, the response is optimized with a
theoretical 45° phase margin.
CF = SQRT (CIN)/(2S ˜ GBWP ˜ RF)
(1)
where GBWP is the Gain Bandwidth Product of the Op Amp
Optimized as such, the I-V converter will have a theoretical pole, fp, at:
fP = SQRT GBWP/(2SRF ˜ CIN)
(2)
With Op Amp input capacitance of 3pF and an estimate for Q1 output capacitance of about 3pF as well, CIN =
6pF. From the typical performance plots, LMH6642/6643 family GBWP is approximately 57MHz. Therefore, with
Rf = 1k, from Equation 1 and Equation 2 above.
Cf = ∼4.1pF and fp = 39MHz
Cf
5pF
Vbias
Photodiode
Equivalent
Rf
Circuit
1k:
Rbias
C1
100nF
Q1
2N3904
-1mAPP
VCC =
+5V
-
Photodiode
Id
Cd
10
-
200pF
Rd
×100k:
R5
x
510:
R2
1.8k:
+
Vout
R11
D1 910
R10
1N4148 :
1k:
R3
1k:
+5V
Figure 63. Single Supply Photodiode I-V Converter
For this example, optimum Cf was empirically determined to be around 5pF. This time domain response is shown
in Figure 64 below showing about 9ns rise/fall times, corresponding to about 39MHz for fp. The overall supply
current from the +5V supply is around 5mA with no load.
200 mV/DIV
20 ns/DIV
Figure 64. Converter Step Response (1VPP, 20 ns/DIV)
Copyright © 2001–2013, Texas Instruments Incorporated
Submit Documentation Feedback
19
Product Folder Links: LMH6642 LMH6643 LMH6644