English
Language : 

LP3963_03 Datasheet, PDF (12/17 Pages) National Semiconductor (TI) – 3A Fast Ultra Low Dropout Linear Regulators
Application Hints (Continued)
Tantalums also have good temperature stability: a good
quality Tantalum will typically show a capacitance value that
varies less than 10-15% across the full temperature range of
125˚C to −40˚C. ESR will vary only about 2X going from the
high to low temperature limits.
The increasing ESR at lower temperatures can cause oscil-
lations when marginal quality capacitors are used (if the ESR
of the capacitor is near the upper limit of the stability range at
room temperature).
ALUMINUM: This capacitor type offers the most capaci-
tance for the money. The disadvantages are that they are
larger in physical size, not widely available in surface mount,
and have poor AC performance (especially at higher fre-
quencies) due to higher ESR and ESL.
Compared by size, the ESR of an aluminum electrolytic is
higher than either Tantalum or ceramic, and it also varies
greatly with temperature. A typical aluminum electrolytic can
exhibit an ESR increase of as much as 50X when going from
25˚C down to −40˚C.
It should also be noted that many aluminum electrolytics only
specify impedance at a frequency of 120 Hz, which indicates
they have poor high frequency performance. Only aluminum
electrolytics that have an impedance specified at a higher
frequency (between 20 kHz and 100 kHz) should be used for
the LP396X. Derating must be applied to the manufacturer’s
ESR specification, since it is typically only valid at room
temperature.
Any applications using aluminum electrolytics should be
thoroughly tested at the lowest ambient operating tempera-
ture where ESR is maximum.
PCB LAYOUT
Good PC layout practices must be used or instability can be
induced because of ground loops and voltage drops. The
input and output capacitors must be directly connected to the
input, output, and ground pins of the LP3963/6 using traces
which do not have other currents flowing in them Kelvin
connect).
The best way to do this is to lay out CIN and COUT near the
device with short traces to the VIN, VOUT, and ground pins.
The regulator ground pin should be connected to the exter-
nal circuit ground so that the regulator and its capacitors
have a "single point ground".
It should be noted that stability problems have been seen in
applications where "vias" to an internal ground plane were
used at the ground points of the LP3963/6 IC and the input
and output capacitors. This was caused by varying ground
potentials at these nodes resulting from current flowing
through the ground plane. Using a single point ground tech-
nique for the regulator and it’s capacitors fixed the problem.
Since high current flows through the traces going into VIN
and coming from VOUT, Kelvin connect the capacitor leads to
these pins so there is no voltage drop in series with the input
and output capacitors.
RFI/EMI SUSCEPTIBILITY
RFI (radio frequency interference) and EMI (electromagnetic
interference) can degrade any integrated circuit’s perfor-
mance because of the small dimensions of the geometries
inside the device. In applications where circuit sources are
present which generate signals with significant high fre-
quency energy content (> 1 MHz), care must be taken to
ensure that this does not affect the IC regulator.
If RFI/EMI noise is present on the input side of the LP396X
regulator (such as applications where the input source
comes from the output of a switching regulator), good ce-
ramic bypass capacitors must be used at the input pin of the
LP396X.
If a load is connected to the LP396X output which switches
at high speed (such as a clock), the high-frequency current
pulses required by the load must be supplied by the capaci-
tors on the LP396X output. Since the bandwidth of the
regulator loop is less than 100 kHz, the control circuitry
cannot respond to load changes above that frequency. The
means the effective output impedance of the LP396X at
frequencies above 100 kHz is determined only by the output
capacitor(s).
In applications where the load is switching at high speed, the
output of the LP396X may need RF isolation from the load. It
is recommended that some inductance be placed between
the LP396X output capacitor and the load, and good RF
bypass capacitors be placed directly across the load.
PCB layout is also critical in high noise environments, since
RFI/EMI is easily radiated directly into PC traces. Noisy
circuitry should be isolated from "clean" circuits where pos-
sible, and grounded through a separate path. At MHz fre-
quencies, ground planes begin to look inductive and RFI/
EMI can cause ground bounce across the ground plane.
In multi-layer PCB applications, care should be taken in
layout so that noisy power and ground planes do not radiate
directly into adjacent layers which carry analog power and
ground.
OUTPUT ADJUSTMENT
An adjustable output device has output voltage range of
1.215V to 5.1V. To obtain a desired output voltage, the
following equation can be used with R1 always a 10kΩ
resistor.
For output stability, CF must be between 68pF and 100pF.
OUTPUT NOISE
Noise is specified in two ways-
Spot Noise or Output noise density is the RMS sum of all
noise sources, measured at the regulator output, at a spe-
cific frequency (measured with a 1Hz bandwidth). This type
of noise is usually plotted on a curve as a function of fre-
quency.
Total output Noise or Broad-band noise is the RMS sum
of spot noise over a specified bandwidth, usually several
decades of frequencies.
Attention should be paid to the units of measurement. Spot
noise is measured in units µV/√Hz or nV/√Hz and total output
noise is measured in µV(rms).
The primary source of noise in low-dropout regulators is the
internal reference. In CMOS regulators, noise has a low
frequency component and a high frequency component,
which depend strongly on the silicon area and quiescent
current. Noise can be reduced in two ways: by increasing the
transistor area or by increasing the current drawn by the
internal reference. Increasing the area will decrease the
chance of fitting the die into a smaller package. Increasing
the current drawn by the internal reference increases the
total supply current (ground pin current). Using an optimized
www.national.com
12