English
Language : 

MCP1754ST-3302E Datasheet, PDF (18/42 Pages) Microchip Technology – 150 mA, 16V, High Performance LDO
MCP1754/MCP1754S
4.4 Input Capacitor
Low input source impedance is necessary for the LDO
output to operate properly. When operating from
batteries, or in applications with long lead length
(> 10 inches) between the input source and the LDO,
some input capacitance is recommended. A minimum
of 1.0 µF to 4.7 µF is recommended for most
applications.
For applications that have output step load
requirements, the input capacitance of the LDO is very
important. The input capacitance provides the LDO
with a good local low-impedance source to pull the
transient currents from in order to respond quickly to
the output load step. For good step response
performance, the input capacitor should be of
equivalent or higher value than the output capacitor.
The capacitor should be placed as close to the input of
the LDO as is practical. Larger input capacitors will also
help reduce any high-frequency noise on the input and
output of the LDO and reduce the effects of any
inductance that exists between the input source
voltage and the input capacitance of the LDO.
4.5 Power Good Output (PWRGD)
The open drain PWRGD output is used to indicate
when the output voltage of the LDO is within 94%
(typical value, see Section 1.0 “Electrical
Characteristics” for minimum and maximum
specifications) of its nominal regulation value.
As the output voltage of the LDO rises, the open drain
PWRGD output will actively be held low until the output
voltage has exceeded the power good threshold plus
the hysteresis value. Once this threshold has been
exceeded, the power good time delay is started (shown
as TPG in the Electrical Characteristics table). The
power good time delay is fixed at 100 µs (typical). After
the time delay period, the PWRGD open drain output
becomes inactive and may be pulled high by an
external pullup resistor, indicating that the output
voltage is stable and within regulation limits. The power
good output is typically pulled up to VIN or VOUT. Pulling
the signal up to VOUT conserves power during
shutdown mode.
If the output voltage of the LDO falls below the power
good threshold, the power good output will transition
low. The power good circuitry has a 200 µs delay when
detecting a falling output voltage, which helps to
increase noise immunity of the power good output and
avoid false triggering of the power good output during
fast output transients. See Figure 4-2 for power good
timing characteristics.
When the LDO is put into Shutdown mode using the
SHDN input, the power good output is pulled low
immediately, indicating that the output voltage will be
out of regulation. The timing diagram for the power
good output when using the shutdown input is shown in
Figure 4-3.
The power good output is an open-drain output that can
be pulled up to any voltage that is equal to or less than
the LDO input voltage. This output is capable of sinking
1.2 mA minimum (VPWRGD < 0.4V maximum).
VPWRGD_TH
VOUT
TPG
VOH
PWRGD
TVDET_PWRGD
VOL
FIGURE 4-2:
Power Good Timing.
VIN
TDELAY_SHDN
SHDN
TPG
VOUT
PWRGD
FIGURE 4-3:
Shutdown.
Power Good Timing from
4.6 Shutdown Input (SHDN)
The SHDN input is an active-low input signal that turns
the LDO on and off. The SHDN threshold is a fixed
voltage level. The minimum value of this shutdown
threshold required to turn the output ON is 2.4V. The
maximum value required to turn the output OFF is 0.8V.
DS22276A-page 18
© 2011 Microchip Technology Inc.