English
Language : 

MCP1726-3302E Datasheet, PDF (15/30 Pages) Microchip Technology – 1A, Low Voltage, Low Quiescent Current LDO Regulator
4.4 Input Capacitor
Low input source impedance is necessary for the LDO
output to operate properly. When operating from
batteries, or in applications with long lead length
(> 10 inches) between the input source and the LDO,
some input capacitance is recommended. A minimum
of 1.0 µF to 4.7 µF is recommended for most
applications.
For applications that have output step load
requirements, the input capacitance of the LDO is very
important. The input capacitance provides the LDO
with a good local low-impedance source to pull the
transient currents from in order to respond quickly to
the output load step. For good step response
performance, the input capacitor should be of
equivalent (or higher) value than the output capacitor.
The capacitor should be placed as close to the input of
the LDO as is practical. Larger input capacitors will also
help reduce any high-frequency noise on the input and
output of the LDO and reduce the effects of any
inductance that exists between the input source
voltage and the input capacitance of the LDO.
4.5 Power Good Output (PWRGD)
The PWRGD output is used to indicate when the output
voltage of the LDO is within 92% (typical value, see the
Electrical Characteristics table for Min/Max specs) of its
nominal regulation value.
As the output voltage of the LDO rises, the PWRGD
output will be held low until the output voltage has
exceeded the power good threshold plus the hysteresis
value. Once this threshold has been exceeded, the
power good time delay is started (shown as TPG in the
Electrical Characteristics table). The power good time
delay is adjustable via the CDELAY pin of the LDO (see
Section 4.6 “CDELAY Input”). By placing a capacitor
from the CDELAY pin to ground, the power good time
delay can be adjusted from 200 µs (no capacitance) to
300 ms (0.1 µF capacitor). After the time delay period,
the PWRGD output will go high, indicating that the
output voltage is stable and within regulation limits.
If the output voltage of the LDO falls below the power
good threshold, the power good output will transition
low. The power good circuitry has a 170 µs delay when
detecting a falling output voltage, which helps to
increase noise immunity of the power good output and
avoid false triggering of the power good output during
fast output transients. See Figure 4-2 for power good
timing characteristics.
When the LDO is put into Shutdown mode using the
SHDN input, the power good output is pulled low
immediately, indicating that the output voltage will be
out of regulation. The timing diagram for the power
good output when using the shutdown input is shown in
Figure 4-3.
MCP1726
The power good output is an open-drain output that can
be pulled up to any voltage that is equal to or less than
the LDO input voltage. This output is capable of sinking
1.2 mA (VPWRGD < 0.4V maximum).
VPWRGD_TH
VOUT
TPG
VOH
PWRGD
TVDET_PWRGD
VOL
FIGURE 4-2:
Power Good Timing.
VIN
30 ms
TOR
70 ms
SHDN
TPG
VOUT
PWRGD
FIGURE 4-3:
Shutdown.
Power Good Timing from
4.6 CDELAY Input
The CDELAY input is used to provide the power-up delay
timing for the power good output, as discussed in the
previous section. By adding a capacitor from the CDE-
LAY pin to ground, the PWRGD power-up time delay
can be adjusted from 200 µs (no capacitance on CDE-
LAY) to 300 ms (0.1 µF of capacitance on CDELAY). See
the Electrical Characteristics table for CDELAY timing
tolerances.
© 2007 Microchip Technology Inc.
DS21936C-page 15