English
Language : 

MCP9700_09 Datasheet, PDF (1/24 Pages) Microchip Technology – Low-Power Linear Active Thermistor™ ICs
MCP9700/9700A
MCP9701/9701A
Low-Power Linear Active Thermistor™ ICs
Features
Description
• Tiny Analog Temperature Sensor
• Available Packages:
- SC70-5, SOT-23-5, TO-92-3
• Wide Temperature Measurement Range:
- -40°C to +125°C (Extended Temperature)
- -40°C to +150°C (High Temperature)
(MCP9700/9700A)
• Accuracy:
- ±2°C (max.), 0°C to +70°C (MCP9700A/9701A)
- ±4°C (max.), 0°C to +70°C (MCP9700/9701)
• Optimized for Analog-to-Digital Converters
(ADCs):
- 10.0 mV/°C (typical) MCP9700/9700A
- 19.5 mV/°C (typical) MCP9701/9701A
• Wide Operating Voltage Range:
- VDD = 2.3V to 5.5V MCP9700/9700A
- VDD = 3.1V to 5.5V MCP9701/9701A
• Low Operating Current: 6 µA (typical)
• Optimized to Drive Large Capacitive Loads
Typical Applications
• Hard Disk Drives and Other PC Peripherals
• Entertainment Systems
• Home Appliance
• Office Equipment
• Battery Packs and Portable Equipment
• General Purpose Temperature Monitoring
Package Type
The MCP9700/9700A and MCP9701/9701A family of
Linear Active Thermistor™ Intergrated Circuit (IC) is an
analog temperature sensor that converts temperature
to analog voltage. It’s a low-cost, low-power sensor
with an accuracy of ±2°C from 0°C to +70°C
(MCP9700A/9701A) ±4°C from 0°C to +70°C
(MCP9700/9701) while consuming 6 µA (typical) of
operating current.
Unlike resistive sensors (such as thermistors), the
Linear Active Thermistor IC does not require an
additional signal-conditioning circuit. Therefore, the
biasing circuit development overhead for thermistor
solutions can be avoided by implementing this low-cost
device. The voltage output pin (VOUT) can be directly
connected to the ADC input of a microcontroller. The
MCP9700/9700A and MCP9701/9701A temperature
coefficients are scaled to provide a 1°C/bit resolution
for an 8-bit ADC with a reference voltage of 2.5V and
5V, respectively.
The MCP9700/9700A and MCP9701/9701A provide a
low-cost solution for applications that require measure-
ment of a relative change of temperature. When
measuring relative change in temperature from +25°C,
an accuracy of ±1°C (typical) can be realized from 0°C
to +70°C. This accuracy can also be achieved by
applying system calibration at +25°C.
In addition, this family is immune to the effects of
parasitic capacitance and can drive large capacitive
loads. This provides Printed Circuit Board (PCB) layout
design flexibility by enabling the device to be remotely
located from the microcontroller. Adding some
capacitance at the output also helps the output
transient response by reducing overshoots or
undershoots. However, capacitive load is not required
for sensor output stability.
3-Pin TO-92
MCP9700/9701
Only
1 23
3-Pin SOT-23
MCP9700/9700A
MCP9701/9701A
GND
3
5-Pin SC70
MCP9700/9700A
MCP9701/9701A
NC 1
5 NC
GND 2
Bottom
View
1
VDD VOUT GND
1
VDD
2
VOUT
VOUT 3
4 VDD
© 2009 Microchip Technology Inc.
DS21942E-page 1