English
Language : 

MIC37150 Datasheet, PDF (8/10 Pages) Micrel Semiconductor – 1.5 A LOW VOLTAGE UCAP LDO REGULATOR
MIC37150/37151/37152
Applications Information
The MIC37150/51/52 is a high-performance low-dropout
voltage regulator suitable for moderate to high-current regu-
lator applications. Its 500mV dropout voltage at full load and
overtemperature makes it especially valuable in battery-
powered systems and as high-efficiency noise filters in post-
regulator applications. Unlike older NPN-pass transistor de-
signs, there the minimum dropout voltage is limited by the
based-to-emitter voltage drop and collector-to-emitter satu-
ration voltage, dropout performance of the PNP output of
these devices is limited only by the low VCE saturation
voltage.
A trade-off for the low dropout voltage is a varying base drive
requirement. Micrel’s Super ßeta PNP™ process reduces
this drive requirement to only 2% to 5% of the load current.
The MIC37150/51/52 regulator is fully protected from dam-
age due to fault conditions. Current limiting is provided. This
limiting is linear; output current during overload conditions is
constant. Thermal shutdown disables the device when the
die temperature exceeds the maximum safe operating tem-
perature. Transient protection allows device (and load) sur-
vival even when the input voltage spikes above and below
nominal. The output structure of these regulators allows
voltages in excess of the desired output voltage to be applied
without reverse current flow.
Thermal Design
Linear regulators are simple to use. The most complicated
design parameters to consider are thermal characteristics.
Thermal design requires the following application-specific
parameters:
• Maximum ambient temperature (TA)
• Output current (IOUT)
• Output voltage (VOUT)
• Input voltage (VIN)
• Ground current (IGND)
First, calculate the power dissipation of the regulator from
these numbers and the device parameters from this datasheet.
PD = (VIN – VOUT) IOUT + VIN IGND
where the ground current is approximated by using numbers
from the “Electrical Characteristics” or “Typical Characteris-
tics.” Then, the heat sink thermal resistance is determined
with this formula:
θSA = ((TJ(MAX) – TA)/ PD) – (θJC + θCS)
Where TJ(MAX) ≤ 125oC and θCS is between 0oC and 2oC/W.
The heat sink may be significantly reduced in applications
where the minimum input voltage is known and is large
compared with the dropout voltage. Use a series input
resistor to drop excessive voltage and distribute the heat
between this resistor and the regulator. The low dropout
properties of Micrel Super ßeta PNP™ regulators allow
significant reductions in regulator power dissipation and the
associated heat sink without compromising performance.
When this technique is employed, a capacitor of at least
1.0µF is needed directly between the input and regulator
ground.
Micrel
Refer to “Application Note 9” for further details and examples
on thermal design and heat sink applications.
Output Capacitor
The MIC37150/51/52 requires an output capacitor for stable
operation. As a µCap LDO, the MIC37150/51/52 can operate
with ceramic output capacitors as long as the amount of
capacitance is 47µF or greater. For values of output capaci-
tance lower than 47µF, the recommended ESR range is
200mΩ to 2Ω. The minimum value of output capacitance
recommended for the MIC37151 is 10µF.
For 47µF or greater, the ESR range recommended is less
than 1Ω. Ultra-low ESR ceramic capacitors are recommended
for output capacitance of 47µF or greater to help improve
transient response and noise reduction at high frequency.
X7R/X5R dielectric-type ceramic capacitors are recom-
mended because of their temperature performance. X7R-
type capacitors change capacitance by 15% over their op-
erating temperature range and are the most stable type of
ceramic capacitors. Z5U and Y5V dielectric capacitors change
value by as much as 50% and 60% respectively over their
operating temperature ranges. To use a ceramic chip capaci-
tor with Y5V dielectric, the value must be much higher than an
X7R ceramic capacitor to ensure the same minimum capaci-
tance over the equivalent operating temperature range. The
MIC37150/51/52 has excellent transient response to varia-
tions in input voltage and load current. The device has been
designed to respond quickly to load current variations and
input voltage variations. Large output capacitors are not
required to obtain this performance. A standard 47µF output
capacitor, is all that is required. Larger values help to improve
performance even further.
Input Capacitor
An input capacitor of 1.0µF or greater is recommended when
the device is more than 4 inches away from the bulk and
supply capacitance, or when the supply is a battery. Small,
surface-mount chip capacitors can be used for the bypass-
ing. The capacitor should be place within 1” of the device for
optimal performance. Larger values will help to improve
ripple rejection by bypassing the input to the regulator, further
improving the integrity of the output voltage.
Transient Response and 3.3V to 2.5V, 2.5V to 1.8V or
1.65V, or 2.5V to 1.5V Conversions
The MIC37150/51/52 has excellent transient response to
variations in input voltage and load current. The device has
been designed to respond quickly to load current variations
and input voltage variations. Large output capacitors are not
required to obtain this performance. A standard 10µF output
capacitor, preferably tantalum, is all that is required. Larger
values help to improve performance even further.
By virtue of its low dropout voltage, this device does not
saturate into dropout as readily as similar NPN-based de-
signs. When converting from 3.3V to 2.5V, 2.5V to 1.8V or
1.65V, or 2.5V to 1.5V, the NPN-based regulators are already
operating in dropout, with typical dropout requirements of
1.2V or greater. To convert down to 2.5V without operating in
dropout, NPN-based regulators require an input voltage of
3.7V at the very least. The MIC37150/51/52 regulator will
provide excellent performance with an input as low as 3.0V or
MIC37150/37151/37152
8
August 2003