English
Language : 

LTC3801 Datasheet, PDF (9/12 Pages) Linear Technology – Micropower Constant Frequency Step-Down DC/DC Controllers in ThinSOT
LTC3801/LTC3801B
APPLICATIO S I FOR ATIO
Output Diode Selection
The catch diode carries load current during the off-time.
The average diode current is therefore dependent on the
P-channel switch duty cycle. At high input voltages the
diode conducts most of the time. As VIN approaches VOUT
the diode conducts only a small fraction of the time. The
most stressful condition for the diode is when the output
is short-circuited. Under this condition the diode must
safely handle IPEAK at close to 100% duty cycle. Therefore,
it is important to adequately specify the diode peak current
and average power dissipation so as not to exceed the
diode ratings.
Under normal load conditions, the average current con-
ducted by the diode is:
ID=


VIN − VOUT
VIN + VD


IOUT
The allowable forward voltage drop in the diode is calcu-
lated from the maximum short-circuit current as:
VF
≈
PD
ISC(MAX)
where PD is the allowable power dissipation and will be
determined by efficiency and/or thermal requirements.
A fast switching diode must also be used to optimize
efficiency. Schottky diodes are a good choice for low
forward drop and fast switching times. Remember to keep
lead length short and observe proper grounding (see
Board Layout Checklist) to avoid ringing and increased
dissipation.
An additional consideration in applications where low no-
load quiescent current is critical is the reverse leakage
current of the diode at the regulated output voltage. A
leakage greater than several microamperes can represent
a significant percentage of the total input current.
CIN and COUT Selection
In continuous mode, the source current of the P-channel
MOSFET is a square wave of duty cycle (VOUT + VD)/
(VIN + VD). To prevent large voltage transients, a low ESR
input capacitor sized for the maximum RMS current must
be used. The maximum RMS capacitor current is given by:
[ ] ( ) CIN Required IRMS ≈ IMAX
VOUT VIN − VOUT
VIN
1/2
This formula has a maximum value at VIN = 2VOUT, where
IRMS = IOUT/2. This simple worst-case condition is com-
monly used for design because even significant deviations
do not offer much relief. Note that capacitor manufacturer’s
ripple current ratings are often based on 2000 hours of life.
This makes it advisable to further derate the capacitor, or
to choose a capacitor rated at a higher temperature than
required. Several capacitors may be paralleled to meet the
size or height requirements in the design. Due to the high
operating frequency of the LTC3801/LTC3801B, ceramic
capacitors can also be used for CIN. Always consult the
manufacturer if there is any question.
The selection of COUT is driven by the required effective
series resistance (ESR). Typically, once the ESR require-
ment is satisfied, the capacitance is adequate for filtering.
The output ripple (∆VOUT) is approximated by:
∆VOUT
≈ IRIPPLE ESR
+
1
8fCOUT


where f is the operating frequency, COUT is the output
capacitance and IRIPPLE is the ripple current in the induc-
tor. The output ripple is highest at maximum input voltage
since ∆IL increases with input voltage.
Manufacturers such as Nichicon, United Chemicon and
Sanyo should be considered for high performance through-
hole capacitors. The OS-CON semiconductor dielectric
capacitor available from Sanyo has the lowest ESR (size)
product of any aluminum electrolytic at a somewhat
higher price. Once the ESR requirement for COUT has been
met, the RMS current rating generally far exceeds the
IRIPPLE(P-P) requirement.
In surface mount applications, multiple capacitors may
have to be paralleled to meet the ESR or RMS current
handling requirements of the application. Aluminum elec-
trolytic and dry tantalum capacitors are both available in
3801f
9