English
Language : 

LTC3526EDC Datasheet, PDF (8/16 Pages) Linear Technology – 500mA 1MHz Synchronous Step-Up DC/DC Converters in 2mm X 2mm DFN
LTC3526/LTC3526B
Operation (Refer to Block Diagram)
exceeds the input by 0.24V, the IC powers itself from
VOUT instead of VIN. At this point the internal circuitry has
no dependency on the VIN input voltage, eliminating the
requirement for a large input capacitor. The input voltage
can drop as low as 0.5V. The limiting factor for the ap-
plication becomes the availability of the power source to
supply sufficient energy to the output at low voltages, and
maximum duty cycle, which is clamped at 90% typical.
Note that at low input voltages, small voltage drops due
to series resistance become critical, and greatly limit the
power delivery capability of the converter.
Low Noise Fixed Frequency Operation
Soft-Start
The LTC3526/LTC3526B contain internal circuitry to provide
soft-start operation. The soft-start circuitry slowly ramps
the peak inductor current from zero to its peak value of
700mA (typical) in approximately 0.5ms, allowing start-
up into heavy loads. The soft-start circuitry is reset in the
event of a shutdown command or a thermal shutdown.
Oscillator
An internal oscillator sets the switching frequency to
1MHz.
Shutdown
Shutdown is accomplished by pulling the SHDN pin
below 0.3V and enabled by pulling the SHDN pin above
0.8V typical. Although SHDN can be driven above VIN
or VOUT (up to the absolute maximum rating) without
damage, the LTC3526/LTC3526B have a proprietary test
mode that may be engaged if SHDN is held in the range
of 0.5V to 1V higher than the greater of VIN or VOUT. If
the test mode is engaged, normal PWM switching action
is interrupted, which can cause undesirable operation
in some applications. Therefore, in applications where
SHDN may be driven above VIN, a resistor divider or other
means must be employed to keep the SHDN voltage below
(VIN + 0.4V) to prevent the possibility of the test mode
being engaged. Please refer to Figure 1 for two possible
implementations.
LTC3526/LTC3526B
4M
±30%
VIN
SHDN
LTC3526/LTC3526B
4M
±30%
SHDN
VCNTRL
R
1M
R > (VCNTRL/(VIN + 0.4) – 1)MΩ
ZETEX ZC2811E
VCNTRL
1M
3526 F01
Figure 1. Recommended Shutdown Circuits when Driving
SHDN above VIN
Error Amplifier
The positive input of the transconductance error amplifier
is internally connected to the 1.195V reference and the
negative input is connected to FB. Clamps limit the mini-
mum and maximum error amp output voltage for improved
large-signal transient response. Power converter control
loop compensation is provided internally. An external
resistive voltage divider from VOUT to ground programs
the output voltage via FB from 1.6V to 5.25V.
VOUT
=
1.195V
•


1+
R2 
R1
Current Sensing
Lossless current sensing converts the peak current signal of
the N-channel MOSFET switch into a voltage that is summed
with the internal slope compensation. The summed signal
is compared to the error amplifier output to provide a peak
current control command for the PWM.
Current Limit
The current limit comparator shuts off the N-channel
MOSFET switch once its threshold is reached. The cur-
rent limit comparator delay to output is typically 60ns.
Peak switch current is limited to approximately 700mA,
independent of input or output voltage, unless VOUT falls
below 0.7V, in which case the current limit is cut in half.
Zero Current Comparator
The zero current comparator monitors the inductor cur-
rent to the output and shuts off the synchronous rectifier
3526bfd