English
Language : 

LTC4008_15 Datasheet, PDF (21/24 Pages) Linear Technology – 4A, High Effi ciency, Multi-Chemistry Battery Charger
LTC4008
APPLICATIONS INFORMATION
PCB Layout Considerations
For maximum efficiency, the switch node rise and fall times
should be minimized. To prevent magnetic and electrical
field radiation and high frequency resonant problems,
proper layout of the components connected to the IC is
essential. (See Figure 11.) Here is a PCB layout priority
list for proper layout. Layout the PCB using this specific
order.
1. Input capacitors need to be placed as close as possible
to switching FET’s supply and ground connections.
Shortest copper trace connections possible. These
parts must be on the same layer of copper. Vias must
not be used to make this connection.
2. The control IC needs to be close to the switching FET’s
gate terminals. Keep the gate drive signals short for
a clean FET drive. This includes IC supply pins that
connect to the switching FET source pins. The IC can
be placed on the opposite side of the PCB relative to
above.
3. Place inductor input as close as possible to switching
FET’s output connection. Minimize the surface area of
this trace. Make the trace width the minimum amount
needed to support current—no copper fills or pours.
Avoid running the connection using multiple layers in
parallel. Minimize capacitance from this node to any
other trace or plane.
4. Place the output current sense resistor right next to
the inductor output but oriented such that the IC’s
current sense feedback traces going to resistor are not
long. The feedback traces need to be routed together
as a single pair on the same layer at any given time
with smallest trace spacing possible. Locate any filter
component on these traces next to the IC and not at
the sense resistor location.
5. Place output capacitors next to the sense resistor
output and ground.
6. Output capacitor ground connections need to feed
into same copper that connects to the input capacitor
ground before tying back into system ground.
7. Connection of switching ground to system ground or
internal ground plane should be single point. If the
system has an internal system ground plane, a good
way to do this is to cluster vias into a single star point
to make the connection.
8. Route analog ground as a trace tied back to IC ground
(analog ground pin if present) before connecting to any
other ground. Avoid using the system ground plane.
CAD trick: make analog ground a separate ground net
and use a 0Ω resistor to tie analog ground to system
ground.
9. A good rule of thumb for via count for a given high
current path is to use 0.5A per via. Be consistent.
10. If possible, place all the parts listed above on the same
PCB layer.
11. Copper fills or pours are good for all power connections
except as noted above in Rule 3. You can also use
copper planes on multiple layers in parallel too—this
helps with thermal management and lower trace
inductance improving EMI performance further.
12. For best current programming accuracy provide a
Kelvin connection from RSENSE to CSP and BAT. See
Figure 12 as an example.
It is important to keep the parasitic capacitance on the RT,
CSP and BAT pins to a minimum. The traces connecting
these pins to their respective resistors should be as short
as possible.
4008fb
21