English
Language : 

LTC2401_15 Datasheet, PDF (18/32 Pages) Linear Technology – 1-/2-Channel 24-Bit Power No Latency ADCs in MSOP-10
LTC2401/LTC2402
APPLICATIO S I FOR ATIO
CS
SDO
Hi-Z
<tEOCtest
2.7V TO 5.5V
1µF
REFERENCE VOLTAGE
ZSSET + 0.1V TO VCC
ANALOG INPUT RANGE
ZSSET – 0.12VREF TO
FSSET + 0.12VREF
(VREF = FSSET – ZSSET)
0V TO FSSET – 100mV
1
VCC
10
FO
LTC2402
2
FSSET
9
SCK
3
CH1
SDO 8
4
CH0
CS 7
5
6
ZSSET GND
TEST EOC
Hi-Z
BIT 31 BIT 30
EOC CH0/CH1
BIT 29
SIG
BIT 28
EXR
BIT 27
MSB
BIT 26
VCC
VCC
= INTERNAL OSC/50Hz REJECTION
= EXTERNAL CLOCK SOURCE
10k
= INTERNAL OSC/60Hz REJECTION
BIT 4
LSB24
BIT 0
TEST EOC
Hi-Z
Hi-Z
SCK
(INTERNAL)
CONVERSION
SLEEP
DATA OUTPUT
CONVERSION
2400 F08
Figure 8. Internal Serial Clock, Single Cycle Operation
The serial data output pin (SDO) is Hi-Z as long as CS is
HIGH. At any time during the conversion cycle, CS may be
pulled LOW in order to monitor the state of the converter.
Once CS is pulled LOW, SCK goes LOW and EOC is output
to the SDO pin. EOC = 1 while a conversion is in progress
and EOC = 0 if the device is in the sleep state.
When testing EOC, if the conversion is complete (EOC = 0),
the device will exit the sleep state and enter the data output
state if CS remains LOW. In order to prevent the device
from exiting the low power sleep state, CS must be pulled
HIGH before the first rising edge of SCK. In the internal
SCK timing mode, SCK goes HIGH and the device begins
outputting data at time tEOCtest after the falling edge of CS
(if EOC = 0) or tEOCtest after EOC goes LOW (if CS is LOW
during the falling edge of EOC). The value of tEOCtest is 23µs
if the device is using its internal oscillator (F0 = logic LOW
or HIGH). If FO is driven by an external oscillator of
frequency fEOSC, then tEOCtest is 3.6/fEOSC. If CS is pulled
HIGH before time tEOCtest, the device remains in the sleep
state. The conversion result is held in the internal static
shift register.
If CS remains LOW longer than tEOCtest, the first rising
edge of SCK will occur and the conversion result is serially
shifted out of the SDO pin. The data output cycle begins on
this first rising edge of SCK and concludes after the 32nd
rising edge. Data is shifted out the SDO pin on each falling
edge of SCK. The internally generated serial clock is output
to the SCK pin. This signal may be used to shift the
conversion result into external circuitry. EOC can be
latched on the first rising edge of SCK and the last bit of the
conversion result on the 32nd rising edge of SCK. After the
32nd rising edge, SDO goes HIGH (EOC = 1), SCK stays
HIGH, and a new conversion starts.
Typically, CS remains LOW during the data output state.
However, the data output state may be aborted by pulling
CS HIGH anytime between the first and 32nd rising edge
of SCK, see Figure 9. On the rising edge of CS, the device
aborts the data output state and immediately initiates a
new conversion. This is useful for systems not requiring
all 32 bits of output data, aborting an invalid conversion
cycle, or synchronizing the start of a conversion. If CS is
pulled HIGH while the converter is driving SCK LOW, the
18