English
Language : 

LT8705_15 Datasheet, PDF (14/44 Pages) Linear Technology – 80V VIN and VOUT Synchronous 4-Switch Buck- Boost DC/DC Controller
LT8705
Operation
Refer to the Block Diagram (Figure 1) when reading the
following sections about the operation of the LT8705.
Main Control Loop
The LT8705 is a current mode controller that provides an
output voltage above, equal to or below the input voltage.
The LTC proprietary topology and control architecture
employs a current-sensing resistor (RSENSE) in buck or
boost modes. The inductor current is controlled by the
voltage on the VC pin, which is the diode-AND of error
amplifiers EA1-EA4. In the simplest form, where the output
is regulated to a constant voltage, the FBOUT pin receives
the output voltage feedback signal, which is compared to
the internal reference voltage by EA4. Low output voltages
would create a higher VC voltage, and thus more current
would flow into the output. Conversely, higher output volt-
ages would cause VC to drop, thus reducing the current
fed into the output.
The GATEVCC pin directly powers the bottom MOSFET
drivers for switches M2 and M3. GATEVCC should always
be connected to INTVCC and should not be powered or
connected to any other source. Undervoltage lock outs
(UVLOs) monitoring INTVCC and GATEVCC disable the
switching regulator when the pins are below 4.65V (typical).
The LDO33 pin is available to provide power to external
components such as a microcontroller and/or to provide an
accurate bias voltage. Load current is limited to 17.25mA
(typical). As long as SHDN is high the LDO33 output is
linearly regulated from the INTVCC pin and is not affected
by the INTVCC or GATEVCC UVLOs or the SWEN pin voltage.
LDO33 will remain regulated as long as SHDN is high and
sufficient voltage is available on INTVCC (typically > 4.0V).
An undervoltage lockout, monitoring LDO33, will disable the
switching regulator when LDO33 is below 3.04V (typical).
Start-Up
The LT8705 contains four error amplifiers (EA1-EA4)
allowing it to regulate or limit the output current (EA1),
input current (EA2), input voltage (EA3) and/or output
voltage (EA4). In a typical application, the output voltage
might be regulated using EA4, while the remaining error
amplifiers are monitoring for excessive input or output
current or an input undervoltage condition. In other ap-
plications, such as a battery charger, the output current
regulator (EA1) can facilitate constant current charging
until a predetermined voltage is reached where the output
voltage (EA4) control would take over.
INTVCC/EXTVCC/GATEVCC/LDO33 Power
Power for the top and bottom MOSFET drivers, the LDO33
pin and most internal circuitry is derived from the INTVCC
pin. INTVCC is regulated to 6.35V (typical) from either the
VIN or EXTVCC pin. When the EXTVCC pin is left open or
tied to a voltage less than 6.22V (typical), an internal low
dropout regulator regulates INTVCC from VIN. If EXTVCC
is taken above 6.4V (typical), another low dropout regula-
tor will instead regulate INTVCC from EXTVCC. Regulating
INTVCC from EXTVCC allows the power to be derived from
the lowest supply voltage (highest efficiency) such as the
LT8705 switching regulator output (see INTVCC Regulators
and EXTVCC Connection in the Applications Information
section for more details).
Figure 2 illustrates the start-up sequence for the LT8705.
The master shutdown pin for the chip is SHDN. When
driven below 0.35V (LT8705E, LT8705I) or 0.3V (LT8705H,
LT8705MP) the chip is disabled (chip off state) and qui-
escent current is minimal. Increasing the SHDN voltage
can increase quiescent current but will not enable the chip
until SHDN is driven above 1.234V (typical) after which
the INTVCC and LDO33 regulators are enabled (switcher
off state). External devices powered by the LDO33 pin can
become active at this time if enough voltage is available
on VIN or EXTVCC to raise INTVCC, and thus LDO33, to an
adequate voltage.
Starting up the switching regulator happens after SWEN
(switcher enable) is also driven above 1.206V (typical),
INTVCC and GATEVCC have risen above 4.81V (typical) and
the LDO33 pin has risen above 3.08V (typical) (initialize
state). The SWEN pin is not available in the TSSOP pack-
age. In this package the SWEN pin is internally connected
to INTVCC.
Start-Up: Soft-Start of Switch Current
In the initialize state, the SS (soft-start) pin is pulled low
to prepare for soft starting the regulator. If forced continu-
ous mode is selected (MODE pin low), the part is put into
discontinuous mode during soft-start to prevent current
8705fe
14
For more information www.linear.com/LT8705