English
Language : 

LTC1562_15 Datasheet, PDF (11/28 Pages) Linear Technology – Very Low Noise, Low Distortion Active RC Quad Universal Filter
LTC1562
APPLICATIONS INFORMATION
external component ZIN, usually a resistor or capacitor.
This component must of course be rated to sustain the
magnitude of voltage imposed on it.
Lowpass “T” Input Circuit
The virtual ground INV input in the Operational Filter block
provides a means for adding an “extra” lowpass pole to
any resistor-input application (such as the basic lowpass,
Figure 5, or bandpass, Figure 6a). The resistor that would
otherwise form ZIN is split into two parts and a capacitor
to ground added, forming an R-C-R “T” network (Figure
9). This adds an extra, independent real pole at a fre-
quency:
fP
=
1
2πRPCT
where CT is the new external capacitor and RP is the
parallel combination of the two input resistors RINA and
RINB. This pair of resistors must normally have a pre-
scribed series total value RIN to set the filter’s gain as
described above. The parallel value RP can however be set
arbitrarily (to RIN/4 or less) which allows choosing a
convenient standard capacitor value for CT and fine tuning
the new pole with RP.
RINA
VIN
RINB
CT
RQ R2
INV V1 V2
2nd ORDER
1/4 LTC1562
1562 F09
Figure 9. Lowpass “T” Input Circuit
A practical limitation of this technique is that the CT capaci-
tor values that tend to be required (hundreds or thousands
of pF) can destabilize the op amp in Figure 3 if RINB is too
small, leading to AC errors such as Q enhancement. For this
reason, when RINA and RINB are unequal, preferably the
larger of the two should be placed in the RINB position.
Highpass “T” Input Circuit
A method similar to the preceding technique adds an
“extra” highpass pole to any capacitor-input application
(such as the bandpass of Figure 6b or the highpass of
Figure 7). This method splits the input capacitance CIN into
two series parts CINA and CINB, with a resistor RT to ground
between them (Figure 10). This adds an extra 1st order
highpass corner with a zero at DC and a pole at the
frequency:
fP
=
1
2πRTCP
where CP = CINA + CINB is the parallel combination of the
two capacitors. At the same time, the total series capaci-
tance CIN will control the filter’s gain parameter (HH in
Basic Highpass). For a given series value CIN, the parallel
value CP can still be set arbitrarily (to 4CIN or greater).
CINA
VIN
CINB
RT
RQ R2
INV V1 V2
2nd ORDER
1/4 LTC1562
1562 F10
Figure 10. Highpass “T” Input Circuit
The procedure therefore is to begin with the target extra
pole frequency fP. Determine the series value RIN from the
gain requirement. Select a capacitor value CT such that RP
= 1/(2πfPCT) is no greater than RIN/4, and then choose
RINA and RINB that will simultaneously have the parallel
value RP and the series value RIN. Such RINA and RINB can
be found directly from the expression:
( ) 1
2
RIN
±
1
2
RIN2 –
4RINRP
The procedure then is to begin with the target corner (pole)
frequency fP. Determine the series value CIN from the gain
requirement (for example, CIN = HH(159pF) for a highpass).
Select a resistor value RT such that CP = 1/(2πRTfP) is at
least 4CIN, and select CINA and CINB that will simultaneously
have the parallel value CP and the series value CIN. Such
CINA and CINB can be found directly from the expression:
1
2
CP
±
1
2
CP2 – (4CINCP)
1562fa
11