English
Language : 

NSR003A0X_10 Datasheet, PDF (17/20 Pages) Lineage Power Corporation – Naos Raptor 3A: Non-Isolated DC-DC Power Modules
Data Sheet
December 6, 2010
Naos Raptor 3A: Non-isolated DC-DC Power Modules
4.5 – 14Vdc input; 0.59Vdc to 6Vdc Output; 3A output current
Thermal Considerations
Power modules operate in a variety of thermal
environments; however, sufficient cooling should be
provided to help ensure reliable operation.
Considerations include ambient temperature, airflow,
module power dissipation, and the need for increased
reliability. A reduction in the operating temperature of
the module will result in an increase in reliability. The
thermal data presented here is based on physical
measurements taken in a wind tunnel The test set-up is
shown in Figure 53. The preferred airflow direction for
the module is in Figure 54.
Wind Tunnel
PWBs
50.8
[2.00]
Power Module
76.2
[3.0]
7.24
[0.285]
Probe Location
for measuring
airflow and
ambient
temperature
Air
Flow
Figure 53. Thermal Test Set-up.
The thermal reference point, Tref used in the
specifications of thermal derating curves is shown in
Figure 54. For reliable operation this temperature
should not exceed 120ºC.
The output power of the module should not exceed the
rated power of the module (Vo,set x Io,max).
Please refer to the Application Note “Thermal
Characterization Process For Open-Frame Board-
Mounted Power Modules” for a detailed discussion of
thermal aspects including maximum device
temperatures.
Airflow Direction
Figure 54. Tref Temperature measurement location.
Post solder Cleaning and Drying
Considerations
Post solder cleaning is usually the final circuit-board
assembly process prior to electrical board testing. The
result of inadequate cleaning and drying can affect both
the reliability of a power module and the testability of the
finished circuit-board assembly. For guidance on
appropriate soldering, cleaning and drying procedures,
refer to Board Mounted Power Modules: Soldering and
Cleaning Application Note.
Through-Hole Lead-Free Soldering
Information
The RoHS-compliant through-hole products use the
SAC (Sn/Ag/Cu) Pb-free solder and RoHS-compliant
components. They are designed to be processed
through single or dual wave soldering machines. The
pins have an RoHS-compliant finish that is compatible
with both Pb and Pb-free wave soldering processes. A
maximum preheat rate of 3°C/s is suggested. The wave
preheat process should be such that the temperature of
the power module board is kept below 210°C. For Pb
solder, the recommended pot temperature is 260°C,
while the Pb-free solder pot is 270°C max. Not all
RoHS-compliant through-hole products can be
processed with paste-through-hole Pb or Pb-free reflow
process. If additional information is needed, please
consult with your Lineage Power technical
representative for more details.
LINEAGE POWER
17